
Access Control with Delegation for Smart Home Applications
Tam Le

Michigan State University

East Lansing, Michigan

letam@msu.edu

Matt W. Mutka

Michigan State University

East Lansing, Michigan

mutka@msu.edu

ABSTRACT
With the emergence of smart home applications, it is important

to have flexible access control so that users can create/transfer

their permissions in a convenient way. We propose a lightweight

authorization protocol with support of a delegation chain in which

a user can easily transfer (part of) his/her access rights to smart

appliances in the form of a Bloom filter. The security of our protocol

is based on the false positive rate of a Bloom filter. A prototype has

been built for evaluation.

CCS CONCEPTS
• Security and privacy → Access control;

KEYWORDS
acccess control, delegation, Bloom filter, IoT

ACM Reference Format:
Tam Le and Matt W. Mutka. 2019. Access Control with Delegation for Smart

Home Applications. In International Conference on Internet-of-Things Design
and Implementation (IoTDI ’19), April 15–18, 2019, Montreal, QC, Canada.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3302505.3310076

1 INTRODUCTION
Internet of Things (IoT) technologies have emerged with various

smart appliances such as smart door locks, smart light bulbs, sen-

sors, HVAC, surveillance camera, etc. A person may possess several

to hundreds of smart devices and vice versa, a single device can be

shared between multiple users. However, smart home users have

been facing difficulties in sharing their devices. Due to the diversity

of users in home environments, including various types of visitors,

it is difficult to define an access control policy that can satisfy all of

user’s ad-hoc behaviors and demands [10].

In Fig. 1, we present a common scenario: Bob listed his house on

Airbnb. He can create a digital key that provides full control to all

devices in the house, such as HVAC, lighting system, etc. but limited

access to the door lock. A security company is also authorized to

receive access logs from his door lock but not permitted to enter the

house. Bob gives the key to his renter, Dave, whose family should

also be able to use the system. It would be more convenient for

Dave to grant permissions to his family members instead of Bob. As

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6283-2/19/04. . . $15.00

https://doi.org/10.1145/3302505.3310076

BobBob

DaveDave

Bob’s house

Security company

Dave’s son

I give you
my key, but

you can
only use it
while I am

away.

You can receive
notifications from my door

locks, but you’re not
allowed to access my

house.

You can enter the
house, but cannot

change the passcode.

Figure 1: A smart home scenario

Dave is not allowed to change the passcode of the lock, he can only

delegate the same or lower permissions. When the lease expires,

Bob revokes the key, including sub-keys created by Dave.

The above scenario addresses the importance of having a scalable

and flexible access control mechanism so that a user can create var-

ious permissions, depending on his needs and capability. Moreover,

most IoT devices have limited resources, such as low computa-

tional power or battery capacity. Therefore they cannot support

complicated security mechanisms.

We propose a lightweight delegation mechanism using Bloom

filters [2], which is inspired by Foley et al. [5]. Leveraging the

property that items can only be inserted but are difficult to remove

from the Bloom filter, they present a decentralized authorization

model where permissions are represented in the forms of Bloom

filters. Although the idea has potential, the proposed model was not

secure enough to be adapted to real-world applications. In this work,

we extend [5] and build an access control mechanism that allows

users to transfer their permissions to their smart home devices to

other users. We create a trusted chain within a small packet that the

devices can verify without complicated cryptographic algorithms.

Although the Bloom filter has a false positive rate, a sufficient

security level can be achieved by setting appropriate parameters.

2 RELATEDWORK
Many commercial products have been studied and found to have

insufficient security mechanisms. Examining several smart appli-

ances, Notra et al. [11] highlight the lack of encryption, appropriate

authentication, message integrity checks and privacy implications.

Unauthorized and over-privileged access have also been found in

several popular smart home systems [4, 8].

In terms of end-user experiences, a case study on several com-

mercial smart home devices [14] points out that although each

142

https://doi.org/10.1145/3302505.3310076
https://doi.org/10.1145/3302505.3310076

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada T. Le et al.

studied device employs a different access control mechanism, none

provides a convenient method to share access with other users.

In a more recent study [15], the authors also express their con-

cerns about the imbalance of power between multiple users who

are supposed to have the same role, where some users may have

(intentionally or unintentionally) more privileges than others.

Roman et al. [12] addresses the importance of an access control

model for distributed IoT that should support granular policies,

delegation and inexpensive computational overhead. In this sense,

capability-based access control (CBAC) is found to be more suitable

for IoT environments than other traditional access control models

[9]. Others [7, 13] propose a CBAC framework that allows users to

manage and share their own access control by issuing capability

tokens, which will be verified by the IoT devices. Although their

approach works well with 1 level of delegation from 1 owner to

multiple users, it will create more computational overhead for the

device when the delegation chain expands to more than 1 hop.

Hussein et al. [9] introduce a Community CBAC framework, in

which an IoT community is formed by IoT devices that shares the

same mission, then a more capable device in the community can

make decisions on behalf of those with limited resources. How to

build such community with trust, however, was not addressed.

SmartTokens [3] introduced a delegable access control system for

NFC-enabled smart phones without a central authority. Although

SmartTokens uses symmetric cryptography, which is suitable for

constrained devices, users still need to present all delegated tokens

through the delegation chain in order to be verified. More recently,

WAVE [1] introduced a blockchain-based decentralized authoriza-

tion system for IoT. WAVE supports non-interactive delegation with

fine-grained access control policies using smart contracts. However,

since running as blockchain nodes is not feasible for constrained

devices, some trusted gateways are still required for the devices to

interact with the blockchain network.

3 BLOOM FILTERS AS PERMISSIONS

name: notify

key: ae18. . .

name: configure

key: 2d67. . .

name: control

key: 13cb. . .

name: root

key: 0511. . .

Figure 2: Example of a permission lattice of a smart lock

A Bloom filter (BF) is a probabilistic data structure that can check

for membership of a given item. An empty filter is a bit array of

lengthm that is initialized to all zeros. An item is added to the filter

by setting k bits, whose positions are generated by k hash functions.

A BF can tell that a given item is definitely not in the set if any of

its k bits is 0. Otherwise, if all of these bits are 1, the item may or

may not belong to the set with a false positive rate.

Foley et al. [5] introduces an approach to implement permissions

as BFs. Given 2 permission x ,y, x is considered lower than y (de-

noted by x ≤ y) if holding y also implies holding x . A BF format

root control

1 0 0 1 0 1 0 1 0 0 1 0B(⌈control ⌉)

configure notify

1 0 1 1 0 1 1 0 1 0 1 1B(⌈notif y ⌉)

Figure 3: Example of ‘notify’ and ‘control’ permission

of x is a filter consisting of all permissions equal to or higher than

x . By keeping the root permission as a secret, it is easy to create

subsequent permissions but difficult to obtain a higher permission.

Consider a lock system
1
where users can control, configure the lock

and receive notifications. A permission lattice P = {root , control ,
conf igure ,noti f y} can be created for this lock as in Fig. 2

2
, where

each permission is represented by a key. The highest permission

root is kept as a secret between the owner and the lock, while all

other values can be public. Let ⌈p⌉ = {x ∈ P |x ≥ p} and B(X) be
the BF to which items from X are added. Suppose Carol is allowed

to control the door lock. Her BF permission will be B(⌈control⌉) =
B({root , control}). To grant her father John a notification-only per-

mission, Carol adds conf igure ,noti f y to her permission to cre-

ate B(⌈noti f y⌉) = B({root , control , conf igure ,noti f y}) without
knowing root . To verify B(⌈noti f y⌉), the lock checks if all values

root , control , conf igure , noti f y are presented in the filter. It should

be noted that the presence of root , control , conf igure does not

mean John has those permissions; instead it implies that his noti f y
permission was granted by a legitimate user.

The above takes advantage of the non-reversibility property of

BFs: items can be added but cannot be removed from the filter as

they may share the same bits. Fig. 3 describes Carol’s B(⌈control⌉)
and John’s B(⌈noti f y⌉) using a 12-bit BF. John can try to remove

noti f y from his filter to obtain B(⌈control⌉). However, since root
and noti f y share the same bit at position 4, removing noti f y by

setting all of its bits back to 0 will also invalidate root . Since root is
unknown, John cannot know which bits should be retained, thus

fails to get the permission. Similarly, Carol is not able to remove

control as well since it overlaps with root at bit 6.
The probability that there is at least 1 overlapping bit in a BF is

Pr {overlap} = 1 − Pr {nonoverlap} = 1 −
m!

(m − nk)!mnk
(1)

wherem is the filter length, n is the number of items in the filter

and k is the number of bits used to index an item to the filter.

Although Foley et al. [5] claim that a high probability of over-

lap can be achieved with appropriatem, n, k , in practice it is not

enough to secure the filter. Figure 4 shows the probability of over-

lap when there are 2 items (n = 2) with m = {512, 1024} and
k = {1, 2, . . . , 50}. With a 1024-bit filter, k should be at least 45 to

have a sufficient probability of overlap. However, with 45 bits, there

are only at most 2
45

combinations of overlapping bits. It should be

emphasized that in practice, the probability to find the correct bits

1
http://support.getvera.com

2
Here we assume control and configure are independent permissions. The policies to

create a permission lattice may depend on manufacturers.

143

Access Control with Delegation for Smart Home Applications IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

0 5 10 15 20 25 30 35 40 45 50

k

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
ov

er
la

pp
in

g

m = 512

m = 1024

Figure 4: Probability of overlapping with 512 and 1024-bit
Bloom filters containing 2 items

is much less than 2
−45

, as it is very unlikely that all of the bits will

overlap. To achieve sufficient security, k should be more than 128

bits. As a result, the filter lengthm must also be increased to reduce

false positive rate as well as prevent the filter to be filled up quickly

when more items are added, which is not a scalable solution.

To solve the problem, we present a new solution by generating

all of the items’ values dynamically for each delegation so that the

same item will be inserted using 2 different sets of bits in 2 different

BF permissions, depending on the permission information such as

user ID, permission name, etc. As a result, any attempt to remove

an item will not be successful since a valid permission would use

a different set of bits than the one resulted from the removal. We

provide more details in the following section.

4 DELEGABLE PERMISSIONS
4.1 Protocol overview
We consider 4 entities in our domain:

• Owner: has full control to his/her devices.

• Smart device: has a built-in permission lattice where each

node is defined by a pair {name ,key} where key is kept

secret between the owner and the device. This is different

from [5] where only the highest permission is secret.

• Normal user: obtains permissions to a device from an owner

or authorized user. If the permission is given by an authorized

user, it needs to be activated at the device before usage.

• Authorized user: is authorized to issue lower permissions

than his/her own permissions to other users. However, per-

mission cannot be issued directly but in forms of certificates

that will be activated at the device.

Owner Authorized userAuthorized user Normal userNormal user Lock

Figure 5: Delegation procedure

The protocol involves 5 procedures:

• Bp ← PermGen(p, id , t) : to issue to user id a BF permission

Bp that expires at time t .

• Bdelp ← DelPermGen(p, id , t): to issue to user id a delegation

permission Bdelp that expires at time t . Users can use Bdelp

to issue authorization certificate Bauthq where q < p.

• {0 or Bq } ← Activate(Bauthq): to check an authorization

certificate Bauthq and return BF permission Bq if the certifi-

cate is valid, otherwise return 0.

• {0 or 1} ← Verify(Bp): to check a BF permission Bp and

return 1 if the permission is valid and grant access accord-

ingly, otherwise return 0.

• K ← KeyDerive(B, salt): to derive a key K from a BF per-

mission B. Here the BF permission is used as master key or

key material to generate a one-time session key K for secure

message exchange between the user and device.

• Enc(K |m) and Dec(K |c): symmetric encryption and decryp-

tion algorithms using key K .

Table 1: Notations and definitions

(P , ≤) a permission lattice

⌈p ⌉ set of all permissions higher than or equal to p
i.e. ⌈p ⌉ = {x ∈ P |x ≥ p }

⌊p ⌋ set of p’s successor permissions, i.e. permissions

lower than p , i.e. ⌊p ⌋ = {x ∈ P |x < p }

B(X) Bloom filter to which items from set X are added

Bp BF permission that allows any access lower than

or equal to p , i.e. Bp = BF (⌈p ⌉)

Bdelp BF delegation permission that is used to create

permissions lower than p

Bauthp BF authorization certificate for permission p

Kauth
p authorization key derived from Bauthp

The reason not to use BF permissions directly as access tokens

but for encryption keys is three-fold. First, a BF permission should

not be presented to the device in plain text to avoid replay attacks.

Second, an attacker may create a filter with many 1s to increase

the probability of matching. However, by using symmetric keys,

the device regenerates the BF permissions by themselves, which

means there will be no redundant 1s, hence that kind of attack can

be avoided. Lastly, an access request is often associated with certain

data. For example, in a request to lock/unlock a door or change the

AC temperature, the lock action and the temperature are sensitive

data that may expose user privacy. Therefore, using BF permissions

as keys both helps to avoid revealing the permission as well as

protect user data. Table 1 provides notations used in our scheme.

4.2 Bloom filter index
To distinguish BF permissions of different users, we define a public

value PID = {perm_name ,userid , exp_time} that serves as a unique
identifier of a permission. For example, {control ,Alice , 191231}
identifies Alice’s control permission, which expires on Dec 31, 2019.

To insert a permission to a BF, we apply the secure index mech-

anism [6]. Given a pseudo-random function f , the insertion of

permission p to BF permission B with id PID works as follows:

144

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada T. Le et al.

Algorithm 1 Bloom permission generation

1: function PermGen(p , id , t)
2: P ID ← p .name | |id | |t
3: Bp ← ∅

4: for each x in ⌈p ⌉ do
5: y ← f (P ID , f (x .name , x .key))
6: Insert x to Bp using y

return Bp
7: function DelPermGen(p , id , t)
8: P ID ← p .name | |id | |t
9: m ← f (P ID , p .key)
10: Bdelp ← ∅

11: for each x in ⌈p ⌉ do
12: x ′ ← x
13: x ′.key ← f (m, x .key)
14: y′ ← f (P ID , f (x ′.name , x ′.key))
15: Insert x ′ to Bdelp using y′

16: ⌊p′⌋ ← ∅
17: for each x in ⌊p ⌋ do
18: x ′ ← x
19: x ′.key ← f (m, x .key)
20: ⌊p′⌋ ← ⌊p′⌋ ∪ {x ′ }

return Bdelp , ⌊p′⌋

(1) Compute x = f (p.name ,p.key)
(2) Compute y = f (PID, x)
(3) Divide y to k chunks {y1, . . . ,yk }, each of which serves as

an index to the Bloom filter.

The permission generation is described by procedure PermGen in
Algorithm 1.

4.3 Protocol Details
4.3.1 Permission delegation. Fig. 6 depicts our delegation proto-

col. The owner gives Alice permission a in the form of Ba . If Alice

is an authorized user, she is given another BF called delegation

permission Bdela , by which she can delegate parts of her rights by

inserting lower permissions than a to it. The generation of delega-

tion permission, described by procedure DelPermGen in Algorithm

1, is identical to the normal permission, except that it works on a

new set of permission values, which are derived from the original

ones by hashing them with the permission ID. The set of successor

permissions of a but with the new derived values (denoted by ⌊a′⌋)

is then sent to Alice. Given Bdela and ⌊a′⌋, Alice can create a sub

permission b < a, by adding corresponding items to Bdela . Since

this new BF is created by Alice - an authorized user, we call it an

authorization permission and denote it as Bauthb to distinguish it

with the delegation permission Bdela that is created by the owner.

It is noteworthy that any delegation with the same permission

b from Alice will result in the same Bauthb , thus to make each del-

egation unique, Alice chooses a random secret xb and computes

an authorization key Kauth
b that is derived from xb and Bauthb , i.e.

Kauth
b = KeyDerive(Bauthb , xb). To issue b to Bob with ID idB ,

Alice generates an authorization certificate certAB by encrypting xb
and Bob’s new permission ID {b, idB , tB } and sends the certificate

together with Kauth
b to Bob. The use of both certificate and autho-

rization key is two-fold. The encryption of Bob’s permission ID

by Alice’s key prevents Bob from altering the information. On the

other hand, sending the certificate alone is vulnerable to a replay at-

tack, when any malicious party who is able to overhear the message

can just resend it to obtain Bob’s permission. Bob’s authorization

permission serves as a temporary session key that is only known

to Bob, thus can prevent the attack.

4.3.2 Activation protocol. Fig. 7a depicts the activation protocol.

To activate permission b given by Alice, Bob first sends his au-

thorization certificate certAB and Alice’s corresponding permission

information PIDA. The device then can compute Alice’s permission

Ba , decrypt the certificate to get all information needed to compute

the authorization key Kauth
b and Bob’s permission Bp , which is

then sent back in encrypted form by Kauth
b .

4.3.3 Verification protocol. As the activation protocol, verifica-

tion also involves secure message exchange using the BF permission

as an encryption key. To request a service under permission b, Bob
encrypts the request data and sends it with his public permission in-

formation, based on which the device computes the corresponding

key Bb to decrypt the message. If the permission is valid, the device

executes the request and sends back the encrypted response to Bob.

Both parties can also use challenges for mutual authentication as

in the activation protocol. The protocol is depicted in Fig. 7b.

5 SECURITY ANALYSIS
Our analysis is under an assumption that users’ smart phones and

PCs are capable of a secure permission exchange. Since BF permis-

sions are used as a symmetric encryption key, the security of our

scheme depends on the difficulty of forging such keys. As discussed

in section 3, there are 2 possible attacks that are analyzed in [5] to

infer a higher permission from 1 or more permissions: (1) removal

attack where the attacker tries to remove items from the BF and

(2) aggregation attack by computing the intersection between 2

or more filters. The removal attack does not work in our scheme

since each item is hashed with the BF permission ID that contains

the lowest permission. For example, given a BF permission Bb ,

an attacker wants to remove b to obtain Ba where a > b. How-
ever in Bb , permission a is binded to b .name while in a valid Ba
it should be binded to the name of itself. Therefore, any attempt

of removal will result in a meaningless BF as it no longer matches

with the attacker’s desired condition. Likewise, aggregation or col-

lusion between users would not work either. As a result, the only

possibility left is to do an exhaustive search to find the filter. The

difficulty of the search depends on the filter sizem, the number of

permission items n and the codeword length k . Since the bits are
generated by pseudo random functions, we assume they are under

a uniform distribution. After inserting n items using k bits per item,

the probability that a bit bi , i = 1 . . .m is still 0 is

P(bi = 0) =

(
1 −

1

m

)kn
(2)

Therefore, the false positive rate of Bloom filter is

f pr =

[
1 −

(
1 −

1

m

)kn]k
≈ (1 − e−kn/m)

k
(3)

145

Access Control with Delegation for Smart Home Applications IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Owner Alice Bob

To delegate a, expiring at tA :

Ba ← PermGen(a , idA , tA)
Ba

−−−−−−−−−−−−→ Save Ba
If is_authorized(idA):

{Bdela , ⌊a′⌋ } ← DelPermGen(a , idA , tA)
Bdela , ⌊a′⌋
−−−−−−−−−−−−→ Save Bdela , ⌊a′⌋

To delegate b , expiring at tB :
Bauthb ← Bdela ∪ B(⌈b′⌉ − ⌈a′⌉)
Choose xb ∈ {0, 1}∗

Kauth
b ← KeyDerive(Bauthb , xb)

Choose xa ∈ {0, 1}∗

Ka ← KeyDerive(Ba , xa)

cer tAB ← Enc(Ka | {b , idB , tB , x })
Kauth
b ,cer t ,xa
−−−−−−−−−−−−→ Save Kauth

b , cer tAB , xa

Figure 6: Permission delegation

Bob Device
idB , Kauth

b , cer tAB , xa

P IDA ← a | |idA | |tA
PIDA ,cer t
−−−−−−−−−−−−→ {a , idA , tA } ← parse(P IDA)

Ba ← PermGen(a , idA , tA)
Ka ← KeyDerive(Ba , xa)
{b , idB , tB , xb } ← Dec(Ka |cer tAB)
Bauthb ← DelPermGen(b , idA , tA)
Kauth
b ← KeyDerive(Bauthb , xb)
Bb ← PermGen(b , idB , tB)

{Bb } ← Dec(Kauth
b |m1)

m1

←−−−−−−−−−−−−m1 ← Enc(Kauth
b |Bb)

(a) Permission activation

Bob Device
idB , Bb

Choose x ∈ {0, 1}∗

Kb ← KeyDerive(Bb , x)
m1 ← Enc(Kb |r eqData)

P IDB ← b | |idB | |tB
P IDB ,m1 ,x
−−−−−−−−−−−−→ {b , idB , tB } ← parse(P IDB)

Bb ← PermGen(b , idB , tB)
Kb ← KeyDerive(Bb , x)
r eqData ← Dec(Kb |m1)

If idB < REVLIST and tB ≥ time()
r es_data ← Exec(r eqData)

r es_data ← Dec(Kb |m2)
m2

←−−−−−−−−−−−−m2 ← Enc(Kb |r esData)

(b) Permission verification

Figure 7: Activation and verification protocol

The average number of bits that is set to 1 after n insertions is

s =m × P(bi = 1) =m

[
1 −

(
1 −

1

m

)kn]
(4)

Hence, the search space to find a Bloom permission is S =
(m
s
)
.

Eq. (3) shows that as the delegation chain expands, the f pr will
increase since more items are added to the filter. Therefore, given a

fixedm, we want to find a value of k that can provide large enough

search space when n is small while still keep a reasonable false

positive rate when n is large. We choose 2 as the lower bound of n
since root is always present in any BF permission

3
. For the upper

bound that basically is the total number of nodes in the permission

lattice, we choose 20 by intuition as we believe an IoT device would

not have more than 20 different types of permissions. Table 2 shows

f pr and search space S and with 3 sizes of the BF and different

values of k . While f pr is monotonically increasing, S will start to

decrease when s exceeds ⌈m
2
⌉. If we take the difficulty of finding

a 128-bit key (whose search space is 3.4 × 1038) as the minimum

security threshold, then according to the table, except form = 256

3
Since only the owner holds secret keys, it is unnecessary for them to use BF permission

consisting of only root to control their devices, thus we omit the case when n = 1.

when S drops to 3.15 × 1030 with n = 20, k in the range of [16, 32]

can provide both good false positive rate and search space.

The f pr is the probability that an item is recognized despite not

being in the set. Thus, it implies the probability that a user can

successfully claim his given permission to be another one that he is

not granted. It should be noted that the calculated false positive rate

by eq. (4) is only for 1 item, while a valid BF permission requires all

items to be recognized without any redundant bit. To claim a false

BF permission, not only the lowest but all n items should be false

positives since every item is associated with the lowest one when

the permission is generated. Thus, for a BF permission containing

n items to be falsely accepted, the actual probability is f prn , which
exponentially increases to be negligible as n increases.

6 IMPLEMENTATION AND DISCUSSION
We use an Arduino MKR1000 board with a 32-bit low power ARM

microcontroller as a smart device and a Java client that runs on a

Dell laptop. The key size and BF size are both 256 bits. ArduinoLibs

4
library is used for cryptographic operations. The pseudo random

function f and the key derivation function use HMAC-SHA256 and

4
https://rweather.github.io/arduinolibs/crypto.html

146

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada T. Le et al.

Table 2: Search space (S) and false positive rate (f pr)

m k f pr (n=2) f pr (n=20) S (n=2) S (n=20)

256

8 1.8156e-10 0.0021760 1.0079e+25 3.0697e+75

16 1.3206e-15 0.0045108 1.1362e+39 1.5845e+65

32 1.0791e-21 0.0645177 5.3677e+57 3.1516e+30

512

8 8.0289e-13 2.6919e-05 8.4114e+29 1.5410e+128

16 3.2966e-20 4.7352e-06 4.6757e+49 1.3348e+152

32 1.7441e-30 2.0348e-05 1.1827e+79 8.0194e+131

1024

8 3.3377e-15 1.9172e-07 6.2091e+34 1.8376e+182

16 6.4463e-25 7.2463e-10 4.9759e+60 1.5588e+257

32 1.0867e-39 2.2422e-11 2.0996e+100 inf

the encryption algorithm is AES-256. Despite not being specifically

designed to be lightweight, these primitives can work well with

Arduino devices. Each item is inserted using 32 bits of indices. The

protocol runs over TCP.

In our first test, the Arduino simulates a door lock with the per-

mission lattice shown in Fig. 2. Table 3a shows the processing time

of control and notify permissions under the two types of requests.

To test for scalability, we also implement a simple lattice with 20

permission nodes and measure the processing time with different

number of nodes added to the filter. The average processing time

is given in Table 3b. Though the activation process has to perform

more operations than the access request, it still takes less than 200

ms even with a large number of items present in the filter.

Compared to [13] which is CBAC and relies on Elliptic Curve

Cryptography (ECC), our scheme is faster. In [13], a capability token

includes 2 signatures. Using micro-ecc
5
library, we found that it

would take 356 ms to verify 1 token on our device, in which a single

signature verification takes 158 ms. As a result, if the delegation

expands, it would take the device more than a second to process a

request. On the other hand, our scheme can take less than 100 ms.

Table 3: Processing time of request

(a) With the simulated smart lock

control notify

Access request 32 ms 38 ms

Activation request N/A
a

68 ms

a
Since control can only be given by the owner, there is no activation needed.

(b) With different number of items

n 10 12 14 16 18 20

Access 57 ms 62 ms 69 ms 73 ms 78 ms 83 ms

Activate 121 ms 135 ms 148 ms 161 ms 175 ms 188 ms

In a certificate-based approach, a parent certificate must be pig-

gybacked in every delegation, hence a user needs to send a number

of certificates to prove its authorization. However, in our approach,

the size of a BF permission is always a constant despite the ex-

pansion of the delegation chain. In addition, the permissions are

verified using BFs and symmetric-key algorithms, which is less com-

putationally expensive than digital signatures. The scalability also

5
https://github.com/kmackay/micro-ecc

supports flexible and fine-grained access control, since users can

add various operations to the filter, as long as they do not violate

the permission hierarchy. In addition, since we use very lightweight

techniques, the solution can be applied to a wide-range of devices,

including those that may be less powerful than the Arduino model.

To save space when the lattice size is large, all of the key values

can be generated from a single seed.

7 CONCLUSION
We propose a lightweight distributed authorization protocol with

support of delegation for home environments. Access right to a

smart device is transferred in form of a Bloom filter with secured

hashing to prevent the permission from being forged. Thanks to the

inability to remove items in the Bloom filter, a user cannot recreate

a permission higher that what he/she is holding, but still is able to

transfer lower permissions. Our protocol can be implemented with

little encryption, thus is suitable for resource-constrained devices.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation. Any opinions, findings, conclusions or recommenda-

tions reflects the views of the authors and do not necessarily reflect

the views of the National Science Foundation.

REFERENCES
[1] Michael P Andersen, John Kolb, Kaifei Chen, Gabriel Fierro, David E Culler, and

Raluca Ada Popa. 2017. WAVE: A Decentralized Authorization System for IoT

via Blockchain Smart Contracts. (2017).

[2] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable

Errors. Commun. ACM 13, 7 (July 1970), 422–426.

[3] Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Sandeep Tamrakar, and Chris-

tian Wachsmann. 2012. SmartTokens: Delegable access control with NFC-enabled
smartphones. Springer.

[4] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security Analysis of

Emerging Smart Home Applications. In Proceedings of the 37th IEEE Symposium
on Security and Privacy.

[5] Simon N Foley and Guillermo Navarro-Arribas. 2013. A Bloom Filter Based Model

for Decentralized Authorization. International Journal of Intelligent Systems
(2013).

[6] Eu-Jin Goh et al. 2003. Secure Indexes. IACR Cryptology ePrint Archive (2003).
[7] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. 2013. A capability-

based security approach to manage access control in the internet of things.

Mathematical and Computer Modelling (2013).

[8] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and

David Wagner. 2016. Smart Locks: Lessons for Securing Commodity Internet of

Things Devices. In ASIA CCS ’16. ACM.

[9] D. Hussein, E. Bertin, and V. Frey. 2017. A Community-Driven Access Control

Approach in Distributed IoT Environments. IEEE Communications Magazine
(2017).

[10] Tiffany Hyun-Jin Kim, Lujo Bauer, James Newsome, Adrian Perrig, and Jesse

Walker. 2011. Access right assignment mechanisms for secure home networks.

Journal of Communications and Networks (2011).
[11] S. Notra, M. Siddiqi, H. Habibi Gharakheili, V. Sivaraman, and R. Boreli. 2014.

An experimental study of security and privacy risks with emerging household

appliances. In 2014 IEEE Conference on Communications and Network Security.
[12] Rodrigo Roman, Jianying Zhou, and Javier Lopez. 2013. On the features and

challenges of security and privacy in distributed internet of things. Computer
Networks (2013).

[13] Antonio F Skarmeta, José L Hernández-Ramos, and M Victoria Moreno. 2014.

A decentralized approach for security and privacy challenges in the internet of

things. In Internet of Things (WF-IoT), 2014 IEEE World Forum on. IEEE.
[14] Blase Ur, Jaeyeon Jung, and Stuart Schechter. 2013. The current state of access

control for smart devices in homes. In Workshop on Home Usable Privacy and
Security (HUPS).

[15] Eric Zeng, Shrirang Mare, and Franziska Roesner. 2017. End user security &

privacy concerns with smart homes. In Symposium on Usable Privacy and Security
(SOUPS).

147

	Abstract
	1 Introduction
	2 Related Work
	3 Bloom Filters As Permissions
	4 Delegable Permissions
	4.1 Protocol overview
	4.2 Bloom filter index
	4.3 Protocol Details

	5 Security Analysis
	6 Implementation and discussion
	7 Conclusion
	Acknowledgments
	References

