ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320616323

Algorithms and Architectures: A Case Study in When, Where and How to
Connect Vehicles

Article in IEEE Intelligent Transportation Systems Magazine - January 2017

DOI: 10.1109/MITS.2017.2776142

CITATIONS READS
8 239

3authors, including:

Josh Siegel Sanjay E. Sarma
Michigan State University Massachusetts Institute of Technology
60 PUBLICATIONS 473 CITATIONS 265 PUBLICATIONS 9,275 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roect  Thermal modeling for design optimization View project

ot Improved Self-Driving View project

All content following this page was uploaded by Josh Siegel on 06 August 2018.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/320616323_Algorithms_and_Architectures_A_Case_Study_in_When_Where_and_How_to_Connect_Vehicles?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320616323_Algorithms_and_Architectures_A_Case_Study_in_When_Where_and_How_to_Connect_Vehicles?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Thermal-modeling-for-design-optimization?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Improved-Self-Driving?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Josh-Siegel-3?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Josh-Siegel-3?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Michigan_State_University?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Josh-Siegel-3?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sanjay-Sarma?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sanjay-Sarma?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Massachusetts-Institute-of-Technology?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sanjay-Sarma?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Josh-Siegel-3?enrichId=rgreq-dfe615c737319869be45fac35dc254db-XXX&enrichSource=Y292ZXJQYWdlOzMyMDYxNjMyMztBUzo2NTY3NTk5MTE5MDMyMzJAMTUzMzU5NTE3MzczMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, VOL. XX, NO. Y, MONTH 2017 1

Algorithms and Architectures: A Case Study in When, Where and
How to Connect Vehicles

Joshua E. Siegel, Dylan C. Erb, and Sanjay E. Sarma
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA

Connected vehicle technologies and applications must coevolve. Existing applications are often suboptimally implemented, stemming
from a dearth of design approaches considering resource use, sensor selection, and communication method. Such design tools are
necessary to optimize connected vehicle implementations, as applications may have varied impact on individual vehicle and fleet
performance, efficiency, and comfort depending on their technical and algorithmic implementation. This paper first introduces several
key considerations in connected vehicle design, then explores the implications of varying input richness, connectivity methods, and
data availability on an example application predicting automotive idle times. We illustrate common design tradeoffs by evaluating
the predictor’s accuracy for different implementations, providing developers a look at a design approach that will serve as a useful
example framework for future application development. We close with a simplified cost/benefit analysis for our demonstration
application to illustrate how feasible, cost-effective application implementations might be identified.

Index Terms—Intelligent Transportation Systems, Automotive Engineering, Automotive Applications, Automotive Electronics,

Telematics, Connected Vehicles, Design.

I. CHANGING DESIGN NEEDS

Since the introduction of automotive networks, vehicles
have used sensing and computation for local optimization
[1]-[3]]. Today, Original Equipment Manufacturers (OEMs)
rely on software to improve vehicle efficiency, reliability, and
performance [4].

Consumer demand for smarter cars and government pushes
for improved safety have recently led OEMs to interconnect
vehicles and infrastructure, with applications from collabo-
rative control, to data-informed efficiency improvements, to
collision avoidance [5]], [6].

More than ever, engineers must treat vehicles as nodes
within larger networks. This paper explores common design
considerations and tradeoffs in developing connected applica-
tions.

II. DEVELOPMENT CONSIDERATIONS

A changing technological landscape has made vehicular
applications that take advantage of connectivity, sensing, and
computation increasingly practical. These advances do facil-
itate new functionality, but little attention has been paid to
ensuring optimal hardware and software implementations.

We argue that this is due to the lack of common design
criteria during algorithm design and when selecting sensing,
computation, and radio technologies. This section identifies
common design considerations, and examines how application
performance changes with in-car technologies, remote server
architectures, and communication methods.

A. Computation

Selecting computing architectures for durable goods like
vehicles is difficult. Engineers must carefully balance the
capabilities and location of storage and processing resources
to create an affordable, resilient, and scalable platform.

Manuscript received November 12, 2016; revised March 20, 2017. Corre-
sponding author: J. Siegel (email: j_siegel @mit.edu).

TABLE 1
LOCAL STORAGE CAN BOTH SUPPORT REALTIME AND DELAY-TOLERANT
APPLICATIONS. WITH CURRENT RADIO TECHNOLOGIES, REMOTE
STORAGE LATENCY IS TOO HIGH FOR REALTIME APPLICATIONS.

Realtime  Delay-Tolerant
Local Data Feasible Feasible
Remote Data | Infeasible Feasible

1) Storage

Storage refers to the memory used to record data within
a vehicle or to store information at a remote location. The
amount of storage necessary depends on an application’s needs
and the duration of record keeping.

Applications using only real-time data may require no in-
vehicle storage. Others, like those using maps or historical
data, may require gigabytes of local or remote storage. Stream-
ing technology blurs the line between local and remote storage.
For example, local storage can be decreased and remote
storage can be increased. Streaming remote data increases
bandwidth cost and latency, but simplifies sharing data among
multiple vehicles.

Local storage has fixed installation costs and negligible
upkeep; remote storage has initial and recurring costs based
on use, and can be expanded on-demand for a fee.

The life of the vehicle, volume of data stored, bandwidth
costs, and latency and data sharing constraints are significant
factors in determining an application’s storage needs.

Storage design is impacted by key trends: the decreasing
cost of providing cellular data [7]], [[8] and flash memory, and
the proliferation of scalable web storage platforms.

As a general rule, remote storage supplies aggregate, delay-
tolerant data, while applications using local data for local con-
trol will preferentially store information in-vehicle. There are
also limitations based on the need for real-time performance,
as shown in Table [l
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2) Processing Power

Processing power determines how quickly in vehicle com-
puters can solve mathematical problems.

In-car computation is limited by cost and legacy practices.
We see these constraints manifest in the cost-driven insecurity
of modern vehicles — heightened system complexity to imple-
ment encryption or credentialing is economically unattractive
[O]. An opposite pull indicates consumer willingness to pay
for connected and autonomous vehicles may soon drive com-
putation improvements [10].

Like storage, processing may take place locally or remotely
to a vehicle. Generally, in-vehicle computation is used for
realtime applications with limited processing needs. Remote
computation provides scalability for intensive calculations and
delay-tolerant applications.

Just as streaming blurs the lines between local and re-
mote processing, differed computing architectures change how
much computation takes place, and where. “Thick clients,”
for example, process data locally and transmit precomputed
values to a remote server, requiring more in-car computation
but limiting bandwidth costs. “Thin clients” require minimal
onboard processing, but transmit raw, costly data [[11]].

Computation has fixed costs for in-car modules and use-
based variable pricing for remote computation.

B. Communications

By definition, connected vehicles required extra-vehicular
communication. Multiple connectivity technologies offer var-
ied latency, bandwidth, cost, and reliability to support differing
application requirements.

1) Latency and Bandwidth

Latency refers to the transit time of data. Many applications,
including those related to safety, require low latency to func-
tion. Delays may result in data starvation, causing application
performance to suffer or fail — leading to potential catastrophe.

Radio technologies have different latency characteristics that
vary based on network loading and signal strength. Addi-
tionally, data-management techniques like priority queueing
may be used to speed message transit. Even algorithmic
improvements can speed computation, lowering effective data
latency.

Bandwidth (throughput) refers to the rate at which bytes
travel across a network. Some applications, like streaming
video, require radios capable of high bandwidth. These tend to
be costly to install, and by virtue of the fact that these systems
transmit more data, may have higher usage costs.

The feasible latency/bandwidth spectrum is explored for
several common radio technologies in Figure[I] Green markers
are peer reviewed sources; red markers are approximations
based on the authors’ own work with the CloudThink platform
[12]. In the case of disagreeing values, conservative figures
are plotted. Similar feasibility plots are useful tools for other
aspects of development. For example, plotting node density
versus communication range may help identify networks use-
ful for consensus applications, while a latency versus range
plot could illustrate feasible technologies for over-the-horizon
awareness applications.

Note the convergence of vehicle mesh networks and future
cellular technologies. With broader coverage, falling costs,
and decreasing latency, cellular connectivity will become
increasingly attractive and may ultimately supplant DSRC as
the de facto communication standard for connected vehicle
applications.

2) Transmission Reliability

Applications may prioritize communications as being es-
sential or “best effort.” An application that can operate in the
absence of connected data, or that can safely cease to function,
tends to use best effort communication. If connectivity must
be assured, this can impact design choices and significantly
raise implementation costs.

One approach to ensuring connectivity is to hybridize
technologies. Fusing DSRC and 4G increases hardware costs
but allows applications near-assured, low latency connectivity.
This synergistic approach is especially useful for applications
where mesh density may not be sufficiently high for DSRC-
only operation, or in cases where 4G coverage is poor. An
example might be a traffic application; a vehicle leaving a
rural area but headed into a city might use 4G for congestion
information until entering the range of the city’s VANET.

3) Relationship to Computation

Communications and computation must be optimized in
concert. While in-car computation offers lower latency and
bandwidth cost than remote computation (where bandwidth
cost refers to a per-byte fee), platform considerations such
as Fog vs Cloud backends can change the possibility space.
Fog and edge computing, for example, can result in reduced
latency to vehicles relative to the Cloud. Depending on the
radio technology used, these may also offer reduced bandwidth
cost. This is shown in Figure [2]

C. Extra-vehicular Inputs

Vehicular applications often require outside data. Data
availability and freshness present challenges that must be
addressed.

1) Data Availability and Freshness

Connected vehicles may require external data, but mesh
technologies like DSRC may fail at long distances or high
speeds. Sensors may fail in inclement weather. Applications
must be able to operate during these and other information
outages.

When connected to external data sources, applications must
determine how frequently to query for information. High
frequency updates drive costs and congest networks but may
improve application responsiveness. Infrequent updates mean
applications use and respond to outdated information. It is not
only near-realtime data must be fresh: databases can also age.

Database freshness can be illustrated by considering in-car
navigation systems. These leave the factory with a reference
map, and the driver must determine whether to pay for updates
or to let the database languish. Frequently, the costs outweigh
the benefits.

It is possible to replace or update application databases.
Selective updates based on likely use can minimize band-
width consumption (if a vehicle has never driven outside of
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Peak Throughput Vs Latency Requirements

10°
= BT
= 2G
o Autonomous Driving[17] = DSRC
= 3G
Augmented Reality[17) BLE
= 802.11ac
' 4G
1 _, Disaster Alert[17]
10 5G
(2]
€
i°)
[0
T
()
> 18]
~§,102 e _eCallll _ _ _ _ __ Video Through Vehicle[4.15] Platooning _Collision Avoidancel12]
g
[= First Responder Connectivity[17]
Q ; imization Virtual Dashboard
— Powertrain Optimizati ’
il‘s g ° O Driver Feedback «, Cooperative Forward Collision Warning[16]
2 Cellular Locking ideo Hazard Sharing
o o o
1 03 Oﬁa;]rzlgdesgg\;rt‘iﬁg o Photo Hazard Sharing o Full CAN Mirroring -, Cloud Office[17]
Environmental Data
o O Fuel Use & VMT Mapping
O Parking Spot Identification Cloud Dash Cam
o Insurance Data
Parking M. Road Surface Mapping
o Farking Map O OFailure Prediction
1 2 4 7
10 10 10° 10 10° 10° 10
log Peak Throughput, kb/s
Fig. 1. This plot shows the latency and bandwidth requirements and technology limitations for common connected vehicle applications and enabling

technologies. Applications inside a technology’s bounding box are considered feasible. Green circles are applications drawn from reference literature [13]—[18]]
; red circles are estimates based on the authors’ own application development. Note that eCall and First Responder application needs differ — the higher
bandwidth requirements suggest the First Responder application transmits additional incident information.

Higher < In-Car Computation Cost ] Lower
Lower < Communications Latency | Higher
Local Fog/Edge Cloud
Lower | Potential Bandwidth Costs Higher
Lower | Server Costs Higher
Less | Data Availability More

Fig. 2. This figure shows how differing communication architectures can
impact the cost of computation, latency, data availability, and more.

Michigan, it wouldn’t need California maps). Similarly, delta
updates containing only new information (new and changed
roads) can minimize bandwidth costs. These approaches may
reduce the amount of in-vehicle storage necessary.

D. Solution Cost

Automotive OEMs strive to provide features at a low cost.
As vehicles are increasingly differentiated by their networked
applications, traditional cost/benefit models break down. Un-
derstanding the upfront and ongoing operating cost of vehicle
technology can determine application feasibility.

1) Hardware Cost

Applications require computation, communication, sensing,
and actuation. Each element contributes to the initial system
cost and may have its own operating costs and consumer
benefits.

Determining the true hardware cost is difficult, as each
element may be support several applications — including appli-
cations that had not been envisioned at time of manufacture.
OEMs must consider the cost and relative benefit of each
hardware component included in a vehicle.

2) Operating Cost

Applications requiring connectivity have ongoing operating
costs for bandwidth, remote storage and computation.

Bandwidth and line fee costs depend on technology and are
negotiated with telecommunications companies based installed
base, data volume, and contract duration. Technologies like
DSRC have no bandwidth cost, but may require cellular
augmentation to function when peer density is low.

Remote computation and storage pricing depends on data
volume and who owns and operates the server (developer,
OEM, managed provider). If an application is to be deployed
across a large fleet of vehicles, it may become cost-effective
to operate one’s own servers. Similarly, an OEM may operate
servers for multiple applications.

An application’s operating cost may also include data access
fees. The cost of licensing maps or other data sources can be
significant, so some OEMs prefer to generate data in-house.
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E. Algorithms

Connected applications must contend with network un-
availability, inaccurate data, and sensor outages. Algorithm
robustness is especially important for applications relating to
safety, where a failure could have grave consequences.

To meet these needs, developers must maintain multiple
algorithms and switch as inputs vary. This could be as simple
as a routing application using historic traffic data rather
than realtime, or could be as involved as an autonomous
vehicle handing over control to a human. Developers must
also identify the point at which inputs are too sparse, and the
application performance will no longer be acceptable.

Therefore, application performance must be quantified.
In a simple case, a classification application’s performance
might simply be its accuracy. In other cases, quantification is
more difficult — for example, minimizing driver annoyance.
Developers must define an objective function describing an
application’s utility.

III. DESIGNING FOR A CASE STUDY: IDLE TIME
PREDICTION

The most perceivably-beneficial connected applications
change how vehicles operate in realtime. To illustrate the
earlier-mentioned design considerations, we examine a real-
time application controlling an Automatic Engine Start-Stop
(AESS) system. The approach and considerations presented
are applicable to all connected vehicle applications for which
performance is quantifiable and costs are measurable, and for
which the solution space is appropriately constrained.

AESS reduces fuel consumption by shutting down the en-
gine at idle. When the driver releases the brake and signals an
imminent restart, the engine restarts. This system has become
popular, as it helps OEMs meet stringent Corporate Average
Fuel Economy targets and gain EPA off-cycle credits [19].

In real-world testing, AESS saves up to 10% of fuel
consumed [20]. However, drivers are frequently annoyed by
the system’s intrusion during short idle events, such as those
occurring at a stop sign or a crosswalk [21]. These systems
annoy up to 11% of drivers to the point of disabling the feature
[19]], resulting in a fleet-wide increase in fuel consumption of
3.3%.

We consider the design process for a connected application
predicting idle duration and eliminate short shutoffs, improv-
ing driver compliance and reducing emissions. Note that while
applications vary, this section explores a canonical process for
optimal application design and implementation.

A. Predicting Idle Time

We must estimate idle times as soon as the car stops to
reduce driver annoyance. From experience, we noted that our
location, proximity, and relative velocity differences to lead
vehicles provide stop duration cues — a car arriving to a newly-
green light might notice accelerating cars at the light and
choose to slow down rather than stop, anticipating a short
delay prior to moving. This driver may exhibit the same
behavior near a crosswalk.

TABLE 11
IDM PARAMETER VALUES
Parameter | Value
A; 2 [ms‘2]
Vio 20 [msflJ
) 4
Sig 2 m
L; 4 [m
T 1 [s]
B; 2 [ms2
B 6 |ms—2

We simulated and captured real data for the parameters in
Figure 3] The simulation used MATLAB models based on the
Intelligent Driver Model (IDM) described below [22]]. This
model predicts the acceleration of a given vehicle based on
driver parameters and the relative distance/speed to the next
vehicle in front.

For a given vehicle (¢), the 1-dimensional position of that
vehicle is denoted as x;, and the velocity of vehicle ¢ is
represented by the ordinary differential equation

d.’IJZ‘
) =T = . 1
v T 7 (1)
and acceleration is
d’Ui
i — Ui = —7» 2
a v 7 )

which is modeled as

dv; V; J s*(vi, Avy) 2
() ()] e

= A’i _—
dt

In , A; is desired acceleration, V;, is the target speed, §
is the acceleration exponent and Aw; is the relative speed to
the next car (v;_1 — v;). s; is defined as

—L;_y 4

Si = Ti—1 — Ly

where x;_; is the position of the car in front of car i, L;
is the length of the car in front. Finally, s* is defined as

’UiAUi ( 5
2V A;B; ) } )
where s;, is the minimum target bumper-to-bumper distance
for car ¢, T is the desired safety time to the car in front, B;
is the target braking deceleration, and B is the maximum
allowed braking deceleration.

For this simulation, the driver parameters were selected to
be representative of a typical city driver. The IDM parameter
values utilized in this study are listed in Table [II} and are based
off the values used by Kesting (2010) with changes made to
better reflect real-world driving within Boston’s city limits
(increased desired acceleration, marginally decreased desire
for speed and preference for shorter following times).

To validate the results of the simulation, real data were
collected using GPS, on-board diagnostics (OBD), ultrasonic
sensors, and LIDAR on a test vehicle. GPS was used to record

s* (v, Avg) = 84 + max [O, (viT +

Tmazx
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TABLE III
CONFUSION MATRIX

Actual Class
Short
Long

Classified Short
# True Positive
# False Positive

Classified Long
# False Negative
# True Negative

the vehicle’s position and heading, OBD recorded the vehi-
cle’s speed, and ultrasonic sensors and LIDAR captured the
intra-vehicle distance, velocity, and relative acceleration (on
production vehicles, RADAR systems can provide these data).
We drove two instrumented vehicles along a fixed trajectory
in series to ensure geospatial data density and availability of
self and lead-car data at all times.

All of these contextual and historic data were then used
for “kth Nearest Neighbor” (kNN) matching to classify an
idle as short (less than two seconds) or long (greater than
or equal to two seconds). Two seconds was selected as the
short/long cutoff because eliminating idles under two seconds
results in increased fuel consumption due to higher startup fuel
requirements [23]].

B. Classification and Accuracy Methods

The kNN prediction model is described in depth in Erb,
2016 [21]]. This simple but effective method finds the k nearest
neighbors based on Euclidean distance in the training set to
the test vector for the idle in question. The data set being
classified is assigned to the class most common among its k
nearest neighbors, so in the case where the simple majority of
the k neighbors are short, then the classifier predicts a short
idle, and vice versa.

To evaluate the accuracy of the classifier of predicting short
idles, we calculate the true positive rate (7'PR) as follows

> True Positive

TPR =
S~ True Positive + Y False Negative’

(6)

where the confusion matrix is defined in Table [Tl

Fig. 3. Parameters measured to inform the Gap Cycle and idle time estimator
include the relative position, velocity, and acceleration of three vehicles.
The Gap Cycle is an extension of the conventional drive cycle concept, but
incorporates an intelligent driver model informed by contextual data such as
the distance and relative speed of leading vehicles.

Real and simulated data demonstrated similar prediction
accuracy, surpassing 90% short idle prediction accuracy.
Therefore, we used additional simulations to expedite data
collection used in evaluating the application’s sensitivity to
design parameters.

IV. OPTIMIZING APPLICATION DESIGN

This section considers the implications of selecting different
input data, architectures, and communication methods on
start/stop prediction accuracy using the kNN model.

From Figure [T} we determined that all current radio tech-
nologies support idle time prediction. We considered range,
and eliminate Bluetooth and WiFi from the possibility space.
Selecting among the remaining technologies therefore comes
down to implementation cost and and benefit (prediction
accuracy).

Examined costs include sensing, storage, and computation
with variable lifetime bandwidth costs. Input type, timeliness,
and availability determine performance. In the following sec-
tions, we consider the cost/benefit tradeoffs, using a simple
cost model and simulating each permutation 100 times to
calculate average accuracy.

Note that while we focus exclusively on financial costs
and benefits due to their ease of modeling, factors such as
human emotions may have significant impact. We make the
simplifying assumption that a reduction in stops over business
as usual provides an increase in satisfaction and a reduction
in net fuel consumption. More exhaustive models could take
these and additional factors into consideration.

A. Cost Modeling

Our cost model includes fixed and variable elements for
sensing, storage, computation, and communication for both the
vehicle and remote infrastructure. These elements are shown
in Figure [

o )

Communication |
Computation
i
i

Neighbors
-

d
oV
Maps o0

e
102
scomp\,\a

—
Pos, Vel, Acc

Fig. 4. This figure represents the typical fixed and variable costs for
implementing idle time estimation.

This model includes the communication cost for sharing
sensor data and receiving map updates, the sensor and in-
car storage cost attributable to the application, the cost of
the server’s bandwidth, and the cost of storing data in the
cloud. Variable costs may change with use and over time, as a
function of other inputs like map update frequency, database
growth, and service life:

Ctotal = (dzmzt + dmaps)(ccell + Cserver + Ccloudstorage) +
Csensors T Ccarstorage-

In this equation: d,,,; is the data transmitted to enable the
application,

dmaps 1s the data required for map updates,

Cecer1 18 the variable cost for cellular or other wireless data
communication,
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TABLE IV
COSTS AND TECHNOLOGY ASSESSMENT ESTIMATES USED IN
DETERMINING OPTIMAL APPLICATION ALGORITHM AND ARCHITECTURE.

Supported vehicle lifespan 12 years
Potential idles checked 12,000 / year
Map efficacy loss 5% / year
Map replacement rate 6% / year
Database size 100 MB
Latency 05.1.2.3s

(DSRC, 5G, 4G, 3G)
Transceiver cost

(DSRC, 5G, 4G, 3G, WiFi)
Data cost

(DSRC, 5G, 4G, 3G, WiFi)
Sensor cost

$800, 600, 400, 200, 30

0, 0.5, 0.4, 0.2, O cents/kb

(GPS, ultrasonic, RADAR) $50, 100, 500

Cloud bandwidth  $0.09 / GB
Cloud storage $0.36 GB / year
Car storage $0.40 / GB

Cserver 1S the variable cost of bandwidth at the server side,

Csensors 18 the portion of the sensor (and computation) cost
attributable to the application,

Ccloudstorage 15 the cost of storage in the cloud,

and

Cearstorage 18 the cost of providing the in-car storage nec-
essary for the application to operate.

This model considers assumes 100% of the hardware cost;
in practice, it should be allocated pro-rata to each dependent
application.

The assumptions supporting cost calculations appear in
Table [[V] These values are based on government data for
average vehicle age and miles traveled as well as the authors’
experience in building and deploying connected vehicle hard-
ware and software.

These inputs will generate a lifetime application cost, which
will help developers determine whether the benefits warrant
the deployment cost.

B. Algorithm Input Data

The kNN idle time classifier supports varied sensor inputs.
Using only those with the most discriminating power reduces
cost while retaining accuracy.

To illustrate how varied inputs change predictor perfor-
mance, we modeled three representative cases using infor-
mation available locally (GPS), from the nearby environ-
ment (ultrasonic parking sensors), and from a wider area
(RADAR/DSRC). Each was simulated for a range of typical
latency and data availability values, with non-availability sim-
ulated by eliminating data from the reference set at random.

Figure [3] plots the accuracy as surfaces of varying latency
and data availability (sparsity), for input vectors consisting of
local data (self position and time), nearby data (self and lead
car position, velocity and acceleration), and wide area data
(self and leading two cars’ position, velocity, and acceleration).

The two-car model is the most accurate overall, with the
one car model matching its accuracy at low latencies. The self-
only model has overall poorer accuracy, but is robust against
latency increases. The self-only model beats the one-car model
at intermediate latencies. With one-car prediction, stale data

leads to inaccurate predictions (e.g. relying on data from a car
traveling through a yellow light).

If cost were not a factor, this plot could be used to
determine the best available algorithm for given data inputs
and technologies.

Accuracy of Idle Predictor for Various Inputs

mmmm Two-car Lead Data
One-car Lead Data
mmmm Self-Informed Only

=100)

Average Accuracy (n
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20
Data Availability (%)

Latency (s) 4 as

Fig. 5. Accuracy for three simulated idle predictors: self data only, data from
one car ahead, data from two leading cars.

C. Other Considerations

Real-world data are dirty, and cost is a real factor. Other
design choices may limit the technologies available for a
developer’s use. Addressing these needs, application accuracy
must be evaluated against cost, sensitivity to data availability,
and other metrics.

These considerations are explored for the idle predictor in
the following sections, where we explore the sensitivity to
system changes one element at a time.

1) Cost vs Benefit

While it is good to understand the theoretical capabilities
of an application, one must understand the cost/performance
relationship as well. Cost is calculated from the model in
Section [[V-A] and we use accuracy as a surrogate for benefit.

For these evaluations, we generated accuracy performance
measures from the simulation possessing location and position
data for a vehicle and its two leading cars. The results
for systems with current and degraded maps are shown in
Figure [6] Degradation and information gain was modeled by
randomly eliminating or incorporating a percentage of data
tuples to or from a baseline set.

These figures illustrate the cost for our system and demon-
strate a) the high cost of hardware for communication and
sensing, and b) the cost and benefit of updated maps in
improving performance. The top plots demonstrate the cost
of the application and all related hardware; the bottom plots
show the cost of the application’s variable resources. On the
left, maps are left to languish while the right-side maps are
replaced at a rate beating simulated data atrophy.

One sees that the cost of deploying an application is small
relative to the cost of the enabling hardware, and that the cost
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Fig. 6. This figure shows the cost and accuracy of two predictors: one with current maps, and one with a degraded map database. Note that these plots
are not comprehensive; for example, DSRC with 3G has a high accuracy and low variable cost but, to attain this accuracy requires the presence of nearby,

connected vehicles.

of updating maps cellularly dominates other communication
costs. Clearly, WiFi hybridization or other map updating
approaches could significantly reduce costs.

2) Sensitivity to Latency

Idle estimation and traffic prediction are time-sensitive
applications. High latency is similar to a leading distracted
driver missing a traffic light turning green, and could cause a
ripple effect of congestion.

Figure |7| shows the performance changes with increased
simulated data receipt latency. Sensitivity to latency grows as
latency increases, quickly driving the prediction rate below
50% and rendering the application ineffective.

3) Sensitivity to Bandwidth

Beyond map updates, shared sensor data drives bandwidth
use. To model the cost of data transmission, we provided each
parameter with a fixed packet size and we calculated their
update rates based on stop frequency estimates. Each trans-
mission’s three-byte packet assumes each input data parameter

is 16 bits in resolution, and that the messaging protocol and
retransmission adds 50% overhead.

In Figure |8} we see that additional data inputs increase the
cost and accuracy of running an application. Depending on
the cost/reward function, additional data transmission may be
worthwhile.

Bandwidth reduction techniques such as estimator-based
mirror may be used to further maximize the data encoded in
each byte, reducing bandwidth costs [24].

4) Sensitivity to Data Availability

Whether data come from on-board sensors or a training set,
dense data are required to improve classification accuracy. The
impact of sparse data depends on several factors including
network technology, latency and bandwidth limits.

The knee in Figure [9] indicates that input richness reaches
a critical point and then offers diminishing returns.
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Fig. 7. Accuracy is not impacted at low latency; as latency increases,
prediction accuracy falls off sharply. This illustrates that slow wireless
technologies are not enabling.
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Fig. 8. This plot shows the impact of sensor bandwidth use relative to

application accuracy.

5) Sensitivity to Freshness

While local databases work well for applications where
reference data are not time-variant, other applications need
fresh information. Databases can be replaced or replenished,
with new data added and/or a subset of the old data removed.

For predicting idle times, the neighbor database must be
kept updated to deal with geospatial changes (road construc-
tion), engineering changes (traffic light timing) and social
changes (driver behaviors).

We modeled data freshness by linearly varying reference
neighbor sparsity. Data loss was held constant, while replen-
ishment rates were varied to show the impact of losing or
gaining reference data.

Figure [I0] shows that replenishment may keep this appli-
cation working well for the lifetime of a vehicle depending
on rate of atrophy and replacement. If the maps are allowed

Sensitivity to Data Availability, 5G
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Fig. 9. Prediction accuracy decreases with increased input sparsity.

to degrade by a net 3% year over year, the application will
stop functioning before the end of the vehicle’s anticipated
lifetime. On the other hand, map replenishment of more than
2% annually offers insignificant additional insight and due to
the cost is not advisable unless it is achieved without incurring
bandwidth cost (via mailed installation media or updates over
WiFi).
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Fig. 10. Lifetime average accuracy for idle time prediction with reference
set data loss, stagnation, or growth.

The impact of data freshness must be considered over the
vehicle’s life, so developers must determine when to stop
supporting an application. Figure [TT] shows data atrophy over
time and how technology choice changes our application’s
robustness to this decay.

Here, we see that 3G and other “slow” technologies are
most sensitive to data loss.

6) Car/Cloud Storage Split versus Bandwidth

The split between in car and remote storage and computa-
tion determines our application’s bandwidth consumption.
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Fig. 11. Databases lose utility over time. Replenishment can keep applications
running well for longer, at possibly at significant expense (depending on the
chosen connectivity technology).

While local computation offers low latency and improved
reliability, remote servers support complex computation and
near-limitless reference data. Here, we consider the cost
impact of running our estimator locally versus remotely in
Figure [I2] A similar figure may be created for the cost of
computation.
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Fig. 12. This figure shows how the cost of bandwidth and data storage depends
on the car/Cloud split.

V. EXAMPLE VALUE/TRADEOFF CALCULATIONS

We now examine this application from a simplified
profit/loss standpoint. First, we create a sales.

We assume that our example car company sells one million
units per year and makes a net profit of $2, 500 per car sold.
This car company conducts a market survey and determines
that if this system works perfectly (100% prediction accuracy),

it stands to gain 4% in annual sales volume, while if this
system works poorly (0% accuracy), it stands to lose 4%
in sales (both these gains and losses ignore network effects
and brand reputation changes). With 50% accuracy, sales
remain unchanged, and we will assume that this model scales
linearly from O to 100%. We assume a development cost of
$5,000,000 and to simplify the cost/benefit model, assume
this cost is invariant for all application embodiments.

Using these simplifying assumptions, we conduct a quick
analysis to determine how this company’s profitability would
change when implementing predictors with differing accu-
racies and costs. The relative changes in profit for several
prediction accuracies are shown in Table [V]

One sees that due to the significant $5 million development
cost and relatively small 4% sales increase for this feature,
the predictor’s accuracy must be at least 52.5% to break even.
With 100% accuracy, the system generates a net increase in
profit of $91.35 per car sold. Therefore, to be cost-effective,
the system must cost $91.35 or less over the operational life
of the vehicle assuming a constant selling price.

From our models, we see that implementing a predictor
is infeasible if we hold the application directly accountable
for the cost of radios, sensors, and bandwidth. It is possible,
however, that these models may be feasible if we are able to
justify the hardware and map update costs as being supported
entirely by another value-add application (e.g. traffic-aware
navigation).

If we instead assume that the car already has appropriate
sensing and communications, we see that some of our simu-
lated solutions can deliver sufficient accuracy at low enough
operating cost to be viable. For example, all of the radio-
connected solutions that do not require map updates and do
not support the hardware cost are feasible and result in a sales
increase as well as a net profit relative to business as usual.

Consider the DSRC case as an example. Accuracy is 85%
with an ongoing operational cost of $0, resulting in a profit
increase of $63.25 per vehicle sold. The 5G case, which yields
90% accuracy, supports an additional $72.67 and costs $15 in
ongoing operational fees over the life of the vehicle to imple-
ment, resulting in a net profit of $57.67. Both technologies are
feasible, though the OEM may select the implementation best
representing the company’s values (luxury/refinement, cost-
consciousness, as examples).

Manufacturers will need to use variations of this simple
cost/benefit analysis to determine whether applications are
wise investments.

VI. APPLICATION AND TECHNOLOGY OUTLOOK

We have considered many factors impacting connected
vehicle application design and performance.

Examining our sample application through the lens of
these considerations illustrates the impact of radio technology
choice, data availability, and architecture on estimator accuracy
and implementation cost. Though this document explored
the design factors for a single application, our approach is
extensible and generalizable toward other application types.

First, the application should be evaluated for technical fea-
sibility and candidate technologies identified, using a process
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Prediction accuracy (%) | Number of cars sold | Net profit (fleet-wide) | Profit increase/decrease | Allowable cost per car
0.00% 960K $2,395M -$105M -$109.38
10.00% 968K $2,415M -$85M -$87.80
20.00% 976K $2,435M -$65M -$66.60
30.00% 984K $2,455M -$45M -$45.73
40.00% 992K $2,475M -$25M -$25.20
50.00% 1,000K $2,495M -$5M -$5.00
52.50% 1,002K $2,500M $0.00 $0.00
70.00% 1,016K $2,535M $35M $34.44
85.00% 1,028K $2,565M $65M $63.23
90.00% 1,032K $2,575M $75M $72.67
100.00% 1,040K $2,595M $95M $91.35

TABLE V

THIS TABLE SHOWS THE RELATIVE PROFIT INCREASES FOR INCLUDING THE INTELLIGENT ENGINE STOP/START SYSTEM, BASED ON OUR SIMPLIFIED
PROFIT AND SALES MODEL.

to evaluate contemporary technology and determine those
capable of supporting the target application, just as we did
in examining feasible regions of latency and bandwidth for
various technologies. It is important to look at emergent en-
abling technologies, as the landscape is growing rapidly even
today. With technologies such as 5G becoming increasingly
convergent with best-available mesh technologies in terms of
bandwidth, latency, and cost, developers must increasingly
consider this and other nascent technologies.

Upon identifying appropriate technology candidates, the
algorithm’s hypothesis should be validated and tested with
different input sets to determine how different data sources
impact algorithm performance and cost.

Finally, a cost model and objective function must be created
so that this function may be optimized. Our models were
simplified; others may be more complex. For any models,
the plots we created showing costs and benefits for differing
technology implementations are effective tools to visualize
how an application might be implemented.

It is worth noting that formalizing optimality for connected
vehicle applications is not possible, because application benefit
depends on subjective qualitative value assessments. In the
end, the optimal application implementation will often need to
strike a balance between local and remote computation. The
specifics of how much computation and storage takes place in
which location will depend on the application and its value to
consumers, the brand image, and the manufacturer.

Following this type of framework will help developers
create efficient applications capable of improving vehicle
design and use. Importantly, these developers will be able to
rationalize their design choices and ensure that applications
are feasible and worthwhile.
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