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This study presents the results of an ongoing research project conducted by the U.S. Federal 

Highway Administration (FHWA) on developing an intelligent approach for structural damage 

detection. The proposed approach is established upon the simulation of the compressed data 

stored in memory chips of a newly developed self-powered wireless sensor. An innovative data 

interpretation system integrating finite element method (FEM) and probabilistic neural network 

(PNN) based on Bayesian decision theory is developed for damage detection. Several features 

extracted from the cumulative limited static strain data are used as damage indicator variables. 

Another contribution of this paper is to define indicator variables that simultaneously take into 

account the effect of array of sensors. The performance of the proposed approach is first 

evaluated for the case of a simply supported beam under three-point bending. Then, the 

efficiency of the method is tested for the complicated case of a bridge gusset plate. The beam and 

gusset plate structures are analyzed as 3D FE models. The static strain data from the FE 

simulations for different damage scenarios is used to calibrate the sensor-specific data 

interpretation algorithm. The viability and repeatability of the method is demonstrated by 

conducting a number of simulations. Furthermore, a general scheme is presented for finding the 

optimal number of data acquisition points (sensors) on the structure and the associated optimal 

locations. An uncertainty analysis is performed through the contamination of the damage 

indicator features with different Gaussian noise levels.  
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1. Introduction 

Structural health monitoring (SHM) is an emerging field in civil engineering for continuous 

damage assessment and safety evaluation of infrastructures. As a result of notable developments 

in the signal analysis and information processing techniques, numerous structural damage 

identification approaches are developed [1-4]. In this context, one of the most widely-used 

approaches is vibration-based method [5,6]. Signal and model-based techniques are the main 

classes of the vibration-based method. The first category is based on defining the damage by 

indices and comparing the structural responses before and after damage [7-9]. The signal-based 

methods are generally appropriate for detecting the damage locations [3]. On the other hand, a 

major feature of the model-based methods is that they can detect both the damage locations and 

severities by improving the structural mathematical model [10-13]. An advantage of using such 

methods is that they require a relatively small number of sensors. Furthermore, they are highly 

effective for monitoring catastrophic events. However, a notable limitation of these techniques is 

that they are not sufficiently sensitive for detecting long term minor fatigue damage. A 

comprehensive review about the existing structural damage detection techniques can be found in 

[14-17]. Another class of the damage detection methods, called nondestructive evaluation (NDE) 

or nondestructive inspection has been the focus of many studies. NDE is the structural condition 

assessment without removing the individual structural components [18-20]. The NDE 

technology is commonly classified as a local-based damage detection approach. Some of the 

well-known NDE techniques are acoustics, emission spectroscopy, fiber-optic sensors, fiber-

scope, hardness testing, leak testing, magnetic perturbation, X-ray, pulse-echo, and radiography 

[18]. 

In the last decade, significant attention has been devoted to the utilization of new sensing 

technologies for instrumentation within the structural systems. A major drawback of using 

traditional wired sensors pertains to the difficulties in deploying and maintaining the associated 

wiring system. Moreover, managing huge amount of data generated by a dense array of wired 

sensors is very challenging and costly [21]. To cope with these limitations, wireless sensor 
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networks (WSNs) are increasingly utilized as alternatives to traditional structural engineering 

monitoring systems. The significant capability of WSNs for sensing the physical state of the 

structural systems has attracted considerable attention in recent years [22-30]. In addition to the 

conventional monitoring applications of WSNs, they are autonomous data acquisition nodes 

providing valuable spatio-temporal information of the structure [31-35]. Dense arrays of low-

cost smart wireless sensors can offer useful data about the structural deterioration. Such 

information can be efficiently used to enhance the performance of the SHM systems [21]. Recent 

development and applications of smart sensors and sensing systems are comprehensively 

introduced by Sundaram et al. [21] and Yun and Min [36]. However, a major concern for the 

application of wireless sensors is related to the difficulties of powering them. To tackle this 

issue, harvesting ambient energy seems to be an attractive solution [37-49]. Energy harvesting is 

the possibility of converting mechanical energy into electrical energy [50]. Among various self-

powering energy sources, piezoelectric transducers are proved to be one of the most efficient 

choices [21-53]. For SHM, piezoelectric transducers can be used for the self-powering of 

wireless sensors through harvesting energy from the mechanical loading experienced by the 

structure [54]. Recently, a new class of self-powered wireless sensors has been developed by the 

authors at Michigan State University (MSU) based on ―smart‖ pebble concept [52-55]. The 

―smart‖ pebble generally refers to a battery-less sensor having a size comparable to the grain size 

of the construction material. By embedding these sensors inside the structure, it is possible to 

monitor the localized strain statistics. The recorded information can be used for early damage 

detection and future condition evaluation. Research in the previous FHWA funded project 

revealed the applicability of the MSU’s smart pebble self-powered wireless sensor (SWS) for 

continuous monitoring of pavement structures [51-55]. This unique sensor is based on the 

integration of piezoelectric transducers with an array of ultra-low power floating gate 

computational circuits [53]. A series of memory cells store the load history profiles that are 

transferred to the data logger system as a voltage signal through the piezoelectric effect. Each of 

the memory cells records events at a specific preset level. The output is reported in the form of a 
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histogram where each bin represents the cumulative time of occurrences at a predetermined load 

level. Despite several advantages of using SWS, there would be a considerable loss of 

information. In fact, a part of the sensed information is compressed as a function of cumulative 

time at each load level. This drawback results in a notable difficulty in the interpretation of the 

data generated by SWS [39, 54]. There are some statistical and probabilistic methods to generate 

full-field data based on the information from existing wireless sensor data. Some examples are 

smoothing element analysis and inverse FE method [56], listwise and pairwise data deletion, 

mean substitution, and expectation maximization [57, 58]. Recently, Lajnef et al. [54] developed 

a method for predicting remaining fatigue life of pavement using the data provided by SWS. 

Moreover, they used a classical statistical technique, called ordinary Kriging to generate the 

missing data from a set of measurements by SWS. Also, SWS has been successfully used for the 

long-term fatigue monitoring in biomechanical implants [53]. 

This study presents a new methodology for the structural damage detection based on the 

simulation of the SWS data. The proposed approach uses features extracted from the cumulative 

time strain distributions at preselected discrete levels. In order to analyze the cumulative static 

strain data, a hybrid method of probabilistic neural network (PNN) and FE is proposed. PNN is a 

neural network implementation of the well-established Bayesian classifier method [58]. The FE 

models of a simply supported beam and a gusset plate with complex geometry components are 

used as representatives of the real structures for method verification. For the analysis, different 

damage scenarios are introduced to these structures. The resulting static strain data are used as 

feature vector for the damage detection process.  

 

2. The Proposed Methodology 

Damage detection algorithms are one of the main parts of the SHM systems. Such algorithms are 

developed to analyze raw sensor data and provide a precise diagnosis of the damage state. 

Apparently, quality and quantity of raw sensor data have a direct effect on the accuracy of 

damage detection [59]. As discussed before, the new SWS made at MSU is capable of 
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continuously monitoring of local strain events within the host structure [54]. Fig. 1 shows a full 

prototype of the current version of the sensor enclosed in an H-shape package.  

 

Fig. 1. Current version of the smart sensor enclosed in an H-shape package [39, 55, 60] 

 

These sensors have a series of memory cells that cumulatively store the duration of strain events, 

at a preselected level discretization. They measure the duration of events when the amplitude of 

the input signal, coming from the piezoelectric, exceeds different thresholds. Fig. 2 presents a 

schematic representation of the level crossing cumulative time counting implemented by the 

developed SWS.  

 

Fig. 2. The level crossing cumulative time counting implemented by a self-powered wireless 

sensor 

 

As can be observed from Fig. 2, the only information that can be extracted from the sensor is the 

cumulative duration of strain events. Accordingly, the sensor does not provide information about 

S1 

S2 

S3 

S5 

S6 

S4 

Δ1(3) Δ1(2) 

Δ2(2) 

Δ3(2) 

Δ6(1) 

Δ5(1) 

Δ4(1) 

Δ3(1) 

Δ2(1) 

Δ1(1) 

Time 

A
m

p
li

tu
d

e 

Δ6(i) 

Δ5(i) 

Δ4(i) 

Δ3(i) 

Δ2(i) 

Strain Level 

Δ1(i) 

S6 

 

S1 

S2 

 S3 

 
S4 

 S5 

 

C
u

m
u

la
ti

v
e 

L
o
a
d

in
g
 T

im
e 

 

 
 

 



6 | P a g e  

 

the normally distributed strain histograms induced by the service loads every reading period. 

That is why interpreting the data generated by SWS is a complicated task and highly desired. In 

order to develop a damage detection algorithm based on the simulation of such limited data, a 

new approach is considered in this research. It is well-known that the service load in structures is 

usually defined by a Gaussian distribution and thus the induced local strain. With a Gaussian 

distributed load, the sensor output is the summation of the cumulative time strain distributions. 

Since the summation of Gaussian distributions can be assumed by a Gaussian distribution, this 

study rationally assumes that the sensor output can be characterized by the following cumulative 

density function (CDF): 

𝐹 𝜀 =
𝛼

2
 1 − 𝑒𝑟𝑓  

𝜀−𝜇

𝜎 2
                                                  (1) 

where  

μ: Mean of the strain distribution 

σ: Standard deviation that account for the load and frequency variability 

α: Total cumulative time of the applied strain.  

On the basis of previous research [54], μ and σ of the cumulative time distribution can be 

regarded as good indicators of the damage progression. In fact, μ and σ are the only viable tools 

to define the SWS output data. These parameters can be obtained by a curve fitting of the sensor 

output distribution collected from the entire memory cells. Consequently, the damage state can 

be logically considered to be a function of μ and σ. The other influencing input parameter 

included in the analysis is the sensor location. Obviously, damage detection process can be 

treated as a pattern recognition and classification problem. The solution is to use a classifier 

which can classify structures either as damaged or healthy. To this aim, a PNN-based damage 

state classification strategy is proposed. The study procedure includes the structural simulation 

with FEM for different damage scenarios, generation of calibration samples and pattern 

classification of testing samples. New features are defined that simultaneously take into account 

the effect of array of scattered sensors. This is mostly of importance for resolving the concerns 



7 | P a g e  

 

for installation procedure of sensors in the field, particularly for pavements. Since the method is 

capable of analyzing the data generated by the randomly distributed sensors, the pebble size 

SWS can be placed in the mix at the site or tossed into the paving materials during construction.  

Fig. 3 illustrates a flow chart of a damage pattern classification model. The μ and σ values are 

obtained through the fitting of a CDF (Eq. (1)) to the cumulative duration of strain events at each 

data acquisition point (sensor). These parameters are used as feature vectors for the calibration of 

the classifier. Thereafter, validation process is used to check the performance of the classifier. If 

convergence condition (desired accuracy) is satisfied, then the process is stopped and the optimal 

number of sensors is reported. Otherwise, the algorithm returns back to optimum sensor number 

selection process until the specified convergence condition is satisfied. The details of the 

procedure are fully described in the next section.  
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Fig. 3. Flow chart of the proposed damage pattern classification model 

 

3. Performance Verification 

The performance of the proposed methodology is verified in two stages. At the first stage, the 

method is applied to simply supported intact and damaged concrete beams under three-point 

bending. The second stage is focused on the verification of the method for a much more 

complicated case which is a bridge gusset plate. A series of FE simulations are conducted for 

both of the cases and the derived models are considered as representatives of the real structures. 
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Static strain measurements at specified or randomly selected locations are used to calibrate the 

supervised learning algorithm. Different techniques can be utilized to solve linear elastic fracture 

mechanics problems [51, 61]. However, the FE method is considered reliable because of its 

applicability to most elasticity problems, as well as its ease of implementation [51, 62, 63].  

Herein, the structures under consideration are assumed to be linearly elastic and are analyzed as 

3D FE models using Abaqus Version 6.12-3. In the FE simulations of beam, axial strains at the 

sensor locations are of interest. That is to say, only in-plane strains are considered to produce 

electric charge. For the gusset plate, maximum principle strains are used due to the complexity of 

the geometry. As a fairly similar loading pattern to real traffic load distribution, the input loading 

type is in the form of half-sine loading (Fig. 4). There are data acquisition points remote to the 

damage sites that will not be any influenced by the damage. Thus, in real conditions, the sensors 

will not record any information. To consider this issue in this study, the data for such as 

acquisition points are not included in the analyses. It is worth mentioning that main focus of this 

research is to propose a pioneering damage detection concept and then verify its performance for 

a simple case and then for a complicated structure, such as the gusset plate. Thus, the issue of 

controlling different mesh sizes, changing the material properties, loading, etc was not within the 

scope of this work.  

 

Fig. 4. The half-sine loading cycles 
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3.1. Case I: Simply Supported Beam 

Fig. 5 shows the geometry and loading of the investigated beams. The beam is modeled using 

three dimensional eight node linear brick elements (C3D8R). For Case I, the sensor locations are 

assumed to be randomly distributed but not very close to the notch (crack). Thus, sophisticated 

modeling (meshing) of the notch is not required. The FE model and mesh are shown in Fig. 6. 

The model of intact beam consists of 158 C3D8R elements corresponding to 380 nodes. Taking 

into account the size of the real smart pebble sensors and also to facilitate the implantation of the 

algorithm, a fairly course meshing is considered. Thus, each of the elements of the FE model can 

be a possible sensor location. Alternatively, in case of applying a finer mesh, the averages of the 

strains at elements equivalent to the probable sensor volume can be used. It is assumed that the 

damaged zone extends through the entire width of the beam. The damage is simulated by 

removing rectangular sections of different sizes at the centre of the beam. In this model, uniform 

pressure load is applied on the top of the beam. The amplitude of the load is optimally taken in a 

way that there would be a sense of stress throughout the beam. However, the material and 

geometry properties used in the model are as given below.  

 E = 29000MPa  

 Poisson Ratio = 0.2 

 Density = 2400 kg/m³ 

 Dimensions (L, D, W): 400×100×10mm 

 Load (Pressure): 10 MPa 

 Load Frequency = 2Hz 

 

 

Fig. 5. Geometry and loading of a damaged simply supported concrete beam 
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Fig. 6. The FE model of a simply supported beam 

 

3.1.1. Data Processing 

The FE model of the beam is used as a representation of the real structure. Static strain data of 

the surface nodes is extracted from the simulations and used to derive the feature vectors for the 

damage state classification process. To validate the efficiency of the proposed approach, 

different damage scenarios are considered. The severity of damage is defined by changing the 

notch to the beam depth (a/D) as follows:  

            1: Intact beam (a/D = 0.00) 

               2: a/D = 0.05 

               3: a/D = 0.1 

               4: a/D = 0.2 

               5: a/D = 0.3 

               6: a/D = 0.4 

               7: a/D = 0.45 

The FE simulation results for some of the damage scenarios (i.e., Classes 1, 5, 7) are shown in 

Fig. 7. The presented results belong to the maximum loading step. As discussed before, SWS has 

a series of memory cells (gates). Each of these gates cumulatively stores the duration of strain 

events at a preselected levels. In general, the number of gates is dependent on the nature of the 

problem and the material. In this study, a typical number of 10 is considered for the strain levels 

to efficiently cover the lower and upper limits of the strain values extracted from the FE 
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simulations of seven damage scenarios. The minimum and maximum of the strain values are 

about 0.122 and 288.965 , respectively. Thus, for the analysis, the lower and upper bounds of 

the strain levels are, respectively, set to 0.100 and 300.000 . Ten gates are considered and 

therefore the difference between the strain levels is 33.322 . The preselected strain levels are 

shown in Table 1. Using the strain histories of all elements, a script is written in MATLAB to 

perform the following tasks: 

a) Takes the strain-time data from Abaqus and measures the duration of events at the 

strain levels defined in Table 1.  

b) Fits CDF given in Eq. (1) to the cumulative time of occurrences at predetermined 

strain levels obtained from the first step. 

c) Reports the μ and σ for the elements 

d) Returns the horizontal and vertical distance of the sensor from the beam center     

Fig. 8 illustrates a representative example of the above procedure for one of the elements. The 

obtained data are subsequently used to calibrate the PNN classifier. 

 

 

(a) Intact beam(Class 1: a/D= 0) 

 

(b) Damaged beam (Class 5: a/D= 0.3) 
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(c) Damaged beam (Class 7: a/D= 0.45) 

Fig. 7. The FE simulation results for different damage scenarios for Case I (Von Mises stress 

distribution). 

 

Table 1.  The preselected strain levels considered for the analysis 

Gate number Strain Level () 

1 0.100 

2 33.422 

3 66.744 

4 100.067 

5 133.389 

6 166.711 

7 200.033 

8 233.356 

9 266.678 

10 300.000 

 

 

Fig. 8. A typical curve fitting of cumulative time of occurrences at predetermined strain levels 
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3.2. Case II: Gusset Plate of Bridge 

In 2007, the deck truss portion of the I-35W Highway Bridge in Minneapolis, Minnesota 

collapsed. According to The National Transportation Safety Board [64], the collapse occurred 

due to a bending instability in the U10W gusset plates. Due to the importance of this catastrophic 

event, the failure analysis of the I-35W Highway Bridge has been the focus of many studies (e.g. 

[65-68]). In this study, a gusset plate with a structure similar but not exactly identical to that of 

the I-35W Highway Bridge is considered for further verification of the proposed approach. The 

3D FE model for the gusset plate is shown in Fig. 9. The dimension of the joint is given in Fig. 

10. Besides, Fig. 11 describes the location and the magnitude of the loading. The load magnitude 

is taken equal to 10% of the critical loading at the time of bridge collapse [66]. The plate is 

modeled using three dimensional linear tetrahedral elements (C3D4). The model of the gusset 

plate consists of about 50000 C3D4 elements corresponding to about 25000 nodes. However, the 

material and geometry properties used in the model are as given below.  

 E = 200000MPa (Steel ASTM-A36)  

 Poisson Ratio = 0.3 

 Density = 7800 kg/m³ 

 Load Frequency = 0.5Hz 

The thickness of the gusset plate is 0.5 inch (12.7 mm). The diameter for the data accusations 

nodes (potential sensors) is equal to 10 mm. The average of the max principle strains at the nodes 

within the sensor specified area is taken as the representative strain value for each sensor. 

Several sensors are considered for the analysis. The distance between the sensors is taken 80mm. 

Considering the dimension of the plate, 28 and 16 sensors are defined in the horizontal and 

vertical directions, respectively. Thus, the maximum number of data acquisitions nodes is 28 × 

16 = 448. The location of sensors in the gusset plate can be seen in Fig. 9.  
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Fig. 9. The geometry of the gusset plate 

 

 

Fig. 10. Dimensions of the gusset plate joint [66] 

 

Fig. 11. The location and the magnitude of the loading 
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3.2.1. Data Processing 

Similar to Case I, static strain data of the surface nodes extracted from the FE simulations are 

used for the damage detection. In order to have a more realistic definition of the damage 

progress, an extended finite element method (XFEM) analysis is first performed. XFEM is an 

efficient extension to classical FEM to model the propagation of various discontinuities such as 

cracks [69]. Herein, an XFEM crack with a small length (10 mm) is created at the middle of the 

plate and then the load is increased to capture the crack propagation status. Fig. 12 illustrates the 

results of the XFEM analysis for critical loading along with the crack propagation direction.  

 

(a) Crack propagation direction 

 

(b) Von Mises stress distribution for critical loading  

Fig. 12. The results of the XFEM analysis 

 

Taking into account the final length of the crack at the plate failure (530 mm) and its direction, 

fifteen damage states (classes) are defined. The damage is simulated by creating notches of 

different sizes through a new series of FE analyses. Fig. 13 presents a schematic definition of 

different damage states for the gusset plate. The first damaged case belongs to the initial notch 
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with 10 mm length. The other states are created by adding 20 mm to each side of the initial notch 

on the direction already detected by XFEM. For instance, the third damaged class pertains to the 

notch with an initial length of 10 mm plus 20 mm on each side, 10 + 20 + 20 = 60 mm. 

Subsequently, the damage classes can be defined by changing the notch size (a) as follows:  

            1: Intact beam (a= 0 mm) 

               2: a = 10 mm (Initial notch) 

               3: a = 50 mm 

               4: a = 90 mm 

               5: a = 130 mm 

               6: a = 170 mm 

               7: a = 210 mm 

               8: a = 250 mm 

               9: a = 290 mm 

               10: a = 330 mm 

               11: a = 370 mm 

               12: a = 410 mm 

               13: a = 450 mm 

               14: a = 490 mm 

               15: a = 530 mm 

 

Fig. 13. Definition of different damage states for the gusset plate 
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The FE simulation results for some of the damage scenarios (i.e., Classes 1, 7, 9) are shown in 

Fig. 14. Since Case II, is a realistic case, the number of gates (strain levels) is selected according 

to the piezoelectric properties considered for the design of the smart pebble sensors. The 

minimum level of strains to be captured by piezoelectric transducers is about 30.00 . On the 

other hand, the maximum of the strain value extracted from the FE simulations of fifteen damage 

scenarios is about 150 . Considering a reasonable number of ten strain levels for the gates, the 

difference between the strain levels is 13.33 . Table 2 presents the preselected strain levels for 

the gusset plate. The MATLAB script written for Case II performs all the tasks that are described 

for Case I.  Additionally, for this complicated case, the new script takes the strain-time data from 

Abaqus and finds the strain information for the considered 448 or any other number of sensors 

with different sizes (for this case: 10 mm). 

 

(a) Intact plate (Class 1: a = 0 mm) 

 

(b) Damaged plate (Class 7: a = 200 mm) 
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                                                                       (c) Damaged plate (Class 9: a = 280 mm)    

 

Fig. 14. The FE simulation results for typical damage scenarios for Case II (Von Mises stress 

distribution). 

Table 2.  The preselected strain levels considered for the analysis 

Gate number Strain Level () 

1 30.00 

2 43.33 

3 56.67 

4 70.00 

5 83.33 

6 96.67 

7 110.00 

8 123.33 

9 136.67 

10 150.00 

 

4. Implementation and Simulation Results  

As discussed before, each of the nodes and elements of the FE models can be a possible sensor 

location. In order to perform the damage analysis, different numbers of data acquisition nodes 

are considered as potential sensors. The first stage is a basic analysis focused on detecting the 

damage introduced to the simply supported beam. Thereafter, the findings from this important 

stage are used to detect the damage states defined for the realistic gusset plate case. For the beam 

case, each of the elements represents a sensor location. For the gusset pate with complex 
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meshing, the diameter for the potential sensors is equal to 10 mm. Although the main goal is to 

provide good damage detection accuracy, the nature of the simulations provides a chance of 

evaluating the optimal number of sensors required for a precise damage detection. The 

performance of the models developed for each sensor configuration is measured using the 

Detection Rate (DR) defined as follows: 

𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐷𝑎𝑚𝑎𝑔𝑒  𝑆𝑡𝑎𝑡𝑒𝑠  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑  

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐷𝑎𝑡𝑎  𝑆𝑒𝑡𝑠  𝑖𝑛  𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛
                              (2) 

In the following sections, the details of the PNN algorithm used for the damage state 

classification are described. Subsequently, comprehensive explanations about the 

implementation of the method and the simulation results are provided.  

 

4.1. Probabilistic Neural Network 

Computational intelligence (CI) techniques are considered as alternatives to existing traditional 

methods for tackling real world problems. They determine the model structure by automatically 

learning from data. CI has different well-known branches such as artificial neural network 

(ANN), fuzzy inference system (FIS), adaptive neuro-fuzzy system (ANFIS), and support vector 

machines (SVM). These techniques have been successfully employed to solve a variety of 

problems in engineering field [70-94]. Among different CI techniques, ANNs have been widely 

used in the field of damage detection and structural identification [95-105]. A major drawback of 

the conventional ANNs pertains to the time-consuming iterative procedure required during 

training of the network to obtain the optimal learning parameters [106]. To overcome such 

limitation, PNN has been proposed by Specht [107]. PNN is essentially based on the well-known 

Bayesian classification by combining the Bayes strategy for decision making with a non-

parametric estimator for the probability density functions (PDFs). It can be used for direct 

estimation of posterior probability densities and pattern classification [58]. There are some 

studies in the literature focusing on the application of PNN to the structural damage 

identification (e.g., [108-113]). Some of the advantages of PNN over the conventional ANN are 
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[114]: (i) The PNN execution is generally much faster than the conventional neural network 

because it does not require a separate training phase, (ii) Training of the PNN algorithm with 

new training data is fairly easy, and (iii) This method provides good classification performance 

in domains with noisy data. Despite significant capabilities of PNN, its application to the 

interpretation of the data generated by WSN or SWS is totally new and original.  

The PNN algorithm adopts a Bayes decision rule, i.e. it considers a test vector x with m 

dimensions that belongs to one of the classes C1, C2,…, Ck. From the multi-category classifier 

decision, x belongs to Ck if [106]: 

𝑃𝑘𝐿𝑘𝐹𝑘 𝑥 > 𝑃𝑗𝐿𝑗𝐹𝑗  𝑥              for all kj                                (3) 

where Fk(x) and Fj(x) are the PDFs for classes Ck and Cj respectively, Lk is the loss function 

associated with misclassifying the vector as belonging to class Cj while it belongs to class Ck, Lj 

is the loss function associated with misclassifying the vector as belonging to class Ck while it 

belongs to class Cj, Pk and Pj are the prior probabilities of occurrence of the classes Ck and Cj, 

respectively. In many situations such as damage assessment problem, L and P are usually 

assumed to be equal for all classes. Hence, the key to using the decision rule given by Eq. (2) is 

to estimate the PDFs from the training patterns.PNN operates based on the concept of a 

nonparametric estimation technique known as Parzen windows classifier and its application to 

Bayesian statistics to estimate the PDFs for each classification class [58, 106, 114]. If the jth 

training pattern for class Ck is xj, then the Parzen estimate of the PDF (Fk) for class Ck is [106]: 

𝐹𝑘 𝑥 =
1

(2𝜋)𝑚 /2𝜂𝑚

1

𝑛
 𝑒𝑥𝑝  −

 𝑥−𝑥𝑗  
𝑇

(𝑥−𝑥𝑗 )

2𝜂2  𝑛
𝑗=1                           (4) 

or 

𝐹𝑘 𝑥 =
1

(2𝜋)𝑚 /2𝜂𝑚

1

𝑛
 𝑒𝑥𝑝 −  

 𝑥−𝑥𝑗 
2

2𝜂2  𝑛
𝑗=1                                  (5) 

 

where n is the number of training patterns of class Ck, m is the input space dimension, and η is an 

adjustable smoothing parameter. In fact, the parameters xj and η represent the center and spread 

(or volume) of the Gaussian bell curve, respectively. The parameter η must be determined 
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experimentally [58, 106, 114]. Eq. (4) implies that any smooth density function can be expressed 

simply as the sum of small multivariate Gaussian distributions. 

Fig. 15 shows a typical representation of the PNN architecture. As it is seen, the PNN 

architecture consists of four layers: (1) input layer, (2) pattern layer, (3) summation layer, and (4) 

a single-node output layer. The input layer includes the m input variables (x1, x2,…, xm). All of 

the variables x are distributed by the input layer to all the neurons in the pattern layer. These 

layers are fully connected so that one neuron is allocated for each pattern in the training set. 

Thus, the number of nodes in the pattern layer is equal to the number of available training input 

vectors (n). The number of nodes in the summation layer is equal to the defined classes.  A dot 

product operation is applied by each pattern neuron j to the input pattern vector x with a weight 

vector wj such that Aj= xwj. A transfer function in the form of 𝑒𝑥𝑝  
𝐴𝑗−1

𝜂2   is applied to Aj and then 

it is outputted to the summation neuron [58, 106]. As both x and wj are normalized to unit length, 

this is equivalent to performing the dot product operation: 

𝑒𝑥𝑝  −
 𝑤𝑗−𝑥 

𝑇
(𝑤𝑗−𝑥)

2𝜂2                                                           (6) 

which can be written as: 

𝑒𝑥𝑝  
2𝑥𝑇𝑤𝑗−𝑥𝑇𝑥−𝑤𝑗

𝑇𝑤𝑗

2𝜂2                                                           (7) 

Since x and wj are normalized to unit length, the dot products x
T
x and wj

T
wj are equal to 1. Thus, 

the above equation can be expressed as: 

𝑒𝑥𝑝  
𝑥𝑇𝑤𝑗−1

𝜂2
                                                          (8) 

It can be observed that the transfer function 𝑒𝑥𝑝  
𝑧𝑗−1

𝜂2   and the exponential term in Eq. (4) have 

the same form. It is necessary to compute this exponential term for each of the neurons in the 

pattern layer [58, 106]. 
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Fig. 15. A typical architecture of PNN with 4 input variables, 6 training instances, and 3 defined 

classes 

 

The summation of units in the summation layer simply sums all the inputs from the pattern units 

that correspond to a given class. This results in the determination of the PDF of each category 

given by Eq. (4). In fact, there is one summation- layer neuron for each category. For instance, 

the output of the summation layer neuron corresponds to the class Ck is [106]:   

𝐶𝑘 𝑥 =  𝑒𝑥𝑝  
 𝑥 .𝑤𝑘𝑗 −1 

𝜂2  
𝑛𝑘
𝑗=1                                                    (9) 

Comparing Eq. (3) with Eq. (9), the constant term of Eq. (4) can be ignored. This results in the 

determination of the PDF of each category given by Eq. (4). It is worth mentioning that the 

transfer function is not limited to being an exponential or Gaussian. A number of different 

transfer functions are presented by Specht [107]. The smoothing parameter, η, has the same 

value throughout the network. Training of PNN can be regarded as finding the best η value for a 

set of vectors x which maximizes the classification accuracy of another independent set of 

vectors (testing data).  The fourth layer of the network is the output-layer. This layer gives a 

binary output value corresponding to the highest PDF. The highest PDF indicates the best 
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classification or category choice for that pattern. In general, a PNN for M classes can be defined 

as follows:  

𝑌𝑗  𝑥 =
1

𝑛𝑗
 𝑒𝑥𝑝  −

 𝑥−𝑥𝑗 ,𝑖 
2

2𝜂2  , 𝑗 = 1, … , 𝑀
𝑛𝑗

𝑖=1
                              (10) 

where nj denotes the number of data points in class j. PNN assigns x into class m if Ym(x) >Yj(x), 

j∈[1,…, M]. ||x-xj,i||
2
is calculated as the sum of squares. e.g. if xj,i = [1,5]

T
 , x = [2,3]

T
 , then ||x-

xj,i||
2
 = (2 - 1)

2
 +(3 - 5)

2
 = 5. The PNN classification procedure is illustrated in Fig. 16. As an 

example, the following three and two data points belong to Class 1 and Class 2, respectively.  

Class 1:  x1,1 = (2, 1);x1,2 = (1, 2); x1,3 = (0, 2) 

Class 2: x2,1 = (-2, 0); x2,2 = (-1, -2) 

The class label for the data sample x = [1, 1.5]
T
 is required. Using the PNN Gaussian window 

function with η = 1, the PDFs for Class 1 and Class 2 at x are: 

𝑌1 𝑥 =
1

3
 𝑒𝑥𝑝  −

(1 − 2)2 + (1.5 − 1)2

2(1)2  + 𝑒𝑥𝑝  −
(1 − 1)2 + (1.5 − 1)2

2(1)2  + 𝑒𝑥𝑝  −
(1 − 0)2 + (1.5 − 2)2

2(1)2   = 0.651 

𝑌2 𝑥 =
1

2
 𝑒𝑥𝑝  −

(1 − (−2))2 + (1.5 − 0)2

2(1)2  + 𝑒𝑥𝑝  −
(1 − (−1))2 + (1.5 − (−2))2

2(1)2   = 0.002 

Since Y1(x)>Y2(x), x = [1, 1.5]
T
 is classified as Class 1. The data points in the above example are 

shown in Fig. 16.  

 

Fig. 16. Data points and their corresponding classes  
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4.2. Damage Detection for Simply Supported Beam 

For the simply supported beam, several analyses are performed with 150, 100, 50, 25, 20, 15, 10 

and 5 ―randomly selected‖ elements (sensors). In order to have an insight into the effect of pre-

determining of the location of the sensors, two separate scenarios are considered for sensor 

numbers equal to 10 and 5. For these cases, the sensors are assumed to be located in the mid-

span of the beam and above the notch. As can be seen in Figs. 7 (a) to (c), this critical location is 

notably influenced by the applied load for both the intact and damaged cases. Each of the 

damage classes is represented by a dummy variable. The variables of 1 to 7 stand for intact 

beam, a/D = 0.05, a/D = 0.1, a/D = 0.2, a/D = 0.3, a/D = 0.4, and a/D = 0.45, respectively. For 

the first phase of the analyses, the damage state is considered to be a function of the following 

parameters: 

𝐷𝑎𝑚𝑎𝑔𝑒𝑠𝑡𝑎𝑡𝑒 = 𝑓 𝑋, 𝑌, 𝜇, 𝜎                                               (11) 

where, 

X: Horizontal distance of the sensor from the beam center        

Y: Vertical distance of the sensor from the beam center  

μ: Mean of the strain distribution 

σ: Standard deviation of the strain distribution 

For the analysis, the generated data sets for each of the sensor configurations are randomly 

classified into three subsets: (1) calibration, (2) validation, and (3) test subsets. The calibration 

set is used to fit the models and the validation set is used to estimate the classification error for 

model selection [115]. For each of the sensor configurations, a number of repetitions with newly 

generated random locations are considered to guarantee that the models with the best 

performance on both the calibration and validation phases are derived. Finally, the testing set is 

employed for the evaluation of the generalization ability of the final chosen models. The 

calibration, validation and testing data are usually taken as 50-70%, 15-25% and 15-25% of all 

data, respectively [72, 115]. In the present study, 70% of the data vectors are used for the 

calibration process and about 15% of the data are taken as the validation data. The remaining of 
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the data sets are used for the testing of the obtained models. Table 3 shows the descriptive 

statistics of the μ and σ values for the entire elements. 

 

Table 3. Descriptive statistics of the μ and σ values for the beam 

Parameter μ σ 

Mean 1.68E-05 6E-06 

Median 1.68E-05 5.44E-06 

Standard Deviation 7.22E-06 1.19E-05 

Sample Variance 5.22E-11 1.42E-10 

Kurtosis 466.3135 175.2442 

Skewness -20.4581 11.46525 

Range 0.000186 0.000231 

Minimum -0.00017 9.73E-07 

Maximum 1.97E-05 0.000232 

 

Each calibration (training) sample is set as one neuron in the pattern layer of PNN. Thus, the 

number of neurons in the pattern layer of the PNN models made with 150, 100, 50, 25, 20, 15, 10 

and 5 randomly selected elements is 731, 490, 245, 123, 74, 49, and 25, respectively. Neurons in 

the summation layer correspond to 7 damage patterns. An extensive trial study is performed to 

select the most relevant input parameters for the PNN model and the smoothing parameter (η). 

Several runs are conducted to obtain a parameterization of PNN with enough generalization. 

When presenting new input vectors, each neuron in the summation layer outputs the PDF 

estimations for each pattern at the test sample point. The pattern class with the largest PDF 

indicates the damage class of the current test sample. A Gaussian function is used as the window 

function for the PNN algorithm. The best classification results for different number of sensors 

are presented in Table 4. Based on the conducted runs, the models were not any sensitive to X 

and Y. That is to say, μ and σ can be considered as sufficient representatives of the damage 

progress. However, as can be observed in Table 4, the models provide good estimations of the 

damage on the calibration data but very poor performance on the validation and testing data. 



27 | P a g e  

 

Furthermore, slightly better results are provided by locating the 10 and 5 sensor numbers in the 

mid-span of the beam compared to the randomly distributed cases.  

 

Table 4. The damage detection performance for the beam using X, Y, μ and σ as the predictor 

variables 

  Damage Detection Performance (%)   

Number of 

potential 

sensors 

 

Calibration Validation Testing 

 Optimal 

smoothing 

parameter 

150  85% 24% 24%  1E-25 

100  85% 30% 24%  1E-20 

50  88% 21% 33%  1E-20 

25  94% 19% 12%  1E-25 

15  97% 25% 20%  1E-20 

10  98% 0% 20%  1E-20 

5  92% 20% 0%  1E-25 

10 (Set)
1
  100% 9% 20%  1E-15 

5 (Set)
2
  96% 20% 20%  1E-30 

1 and 2: Sensors located in the mid-span of the beam, above the notch 

 

Rationally, the closer the sensors to the notch are, the higher the damage detection accuracy is. 

For the cases where the potential sensors are at a great distance from the imposed damage, the 

sensor would not have a sense of damage. Thus, as discussed before, a new strategy is defined to 

improve the damage detection performance. On its basis, it is decided to use both the information 

provided by one sensor and also the general information supplied by the other sensors in that 

specific sensor configuration (group of sensors). In this case, even if one sensor does not sense 
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the damage, the group effect will help detect the damage. To tackle this issue, a set of new input 

parameters are introduced to the formulation of the damage state as follows: 

𝐷𝑎𝑚𝑎𝑔𝑒𝑠𝑡𝑎𝑡𝑒 = 𝑓 𝑋, 𝑌, 𝜇, 𝜎, 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 , 𝜎𝑆 , 𝑍𝜇1 , 𝑍𝜎1, 𝑍𝜇2, 𝑍𝜎2                   (12) 

where, 

μ
D

:
𝜇

μave

  and μ
ave

 is the average of μ of all sensors for a specific damage scenario that μ belongs. 

σD :
𝜎

σave
  and σave  is the average of σ of all sensorsfor a specific damage scenario that σ belongs. 

μ
S
: 𝜇 − μ

ave
  and μ

ave
 is the average of μ of all sensorsfor a specific damage scenario 

σS : 𝜎 − σave   and σave  is the average of σ of all sensorsfor a specific damage scenario 

𝑍𝜇1:
𝜇−μave

μSTD

  and μ
STD

 is the standard deviation of μ of all sensors for a specific damage scenario 

𝑍𝜎1:
𝜎−σave

σSTD
  and σSTD  is the standard deviation of σ of all sensorsfor a specific damage scenario 

𝑍𝜇2:
𝜇 − μ

ave

σave
 

𝑍𝜎2:
𝜎 − μ

ave

σave
 

 

In fact, 𝑍𝜇1 and 𝑍𝜎1 are z-score functions. 𝑍𝜇2 and 𝑍𝜎2 are functions defined in this study 

inspired by the form of the conventional z-score function. As can be observed, the considered 

input variables efficiently take into account the sensor group effect which would improve the 

detection performance, specifically for low number of sensors. For example, assume the case 

where 10 sensors with random locations are used for the damage detection and one is located at 

the corner of the beam. For sure, μ and σ of the sensor at the corner will not have sufficient 

information for detecting the damage state. This is while by using parameters such as 

𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 , 𝜎𝑆 , 𝑍𝜇1 , 𝑍𝜎1 , 𝑍𝜇2, and 𝑍𝜎2, the information from the sensors distributed along the beam 

would enhance the classification accuracy. Similar to the previous stage, several runs are 

conducted to obtain a parameterization of PNN with enough generalization. 
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After extensive preliminary runs, it is found that the parameters defined in Eq. (12) do not 

provide good estimations when used together. A possible reason is that each set of the input 

parameters require a specific smoothing parameter. Also, it is revealed that X, Y, μ, and σ even 

decrease the detection performance when used with other parameters. However, the input 

parameters for the final analyses are categorized into two different groups: (1) 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 , 𝜎𝑆, and 

(2) 𝑍𝜇1, 𝑍𝜎1 , 𝑍𝜇2, 𝑍𝜎2. Tables 5 and 6 present the best classification results for different number 

of sensors for two different input categories. For a better visualization of the results, the 

performance of the models on the validation and testing data is separately shown in Fig. 17. As 

can be observed from Tables 4 to 6 and Fig. 17, introducing the new set of the input parameters 

(i.e., 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 , 𝜎𝑆 , 𝑍𝜇1, 𝑍𝜎1, 𝑍𝜇2 , and 𝑍𝜎2) to the modeling process results in a significant 

improvement of the damage detection performance. The models using 

𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 , 𝜎𝑆 , 𝑍𝜇1 , 𝑍𝜎1 , 𝑍𝜇2, and 𝑍𝜎2 as the predictor variables have a very good performance 

both on the calibration data and on the validation and testing data. Expectedly, the precision of 

the models decreases with decreasing the number of sensors. Moreover, it can be seen that, 

nearly in all cases, the models built with 𝑍𝜇1, 𝑍𝜎1 , 𝑍𝜇2 , and𝑍𝜎2 have a better performance than 

those made using𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆and𝜎𝑆 as the input parameters. Also, the models developed with the 

second set of the predictor variables for the cases of 10 and 5 sensor numbers in the mid-span of 

the beam provide a significantly better performance than those established using only X, Y, μ 

and σ. Considering the above explanations, it can be concluded that 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 , 𝜎𝑆 , 𝑍𝜇1, 𝑍𝜎1 , 𝑍𝜇2, 

and 𝑍𝜎2 contain sufficient information for the detection of the damage state.  Besides, Fig. 18 

presents the detailed classification performance of the derived models on testing data with 

confusion matrixes. A confusion matrix [116] contains information about actual and predicted 

classifications. Each column of the matrix represents the instances in a predicted class, while 

each row represents the instances in an actual class. 
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Fig. 17. A visual comparison of the performance of the models developed using different sets of 

input parameters on the validation and testing data 
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Table 5. The damage detection performance for the beam using 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 , 𝜎𝑆 as the predictor 

variables 

  Damage Detection Performance (%)   

Number of 

potential 

sensors 

 

Calibration Validation Testing 

 Optimal 

smoothing 

parameter 

150  99% 97% 97%  25E-4 

100  100% 93% 97%  1E-4 

50  100% 98% 98%  1E-4 

25  100% 96% 92%  1E-4 

15  96% 75% 80%  1E-4 

10  92% 64% 60%  1E-5 

5  96% 20% 20%  1E-4 

10 (Set)  96% 73% 60%  1E-4 

5 (Set)  100% 80% 80%  1E-4 

 

Table 6. The damage detection performance for the beam using 𝑍𝜇1, 𝑍𝜎1 , 𝑍𝜇2, and 𝑍𝜎2 as the 

predictor variables 

  Damage Detection Performance (%)   

Number of 

potential 

sensors 

 

Calibration Validation Testing 

 Optimal 

smoothing 

parameter 

150  100% 99% 98%  1E-1 

100  100% 98% 99%  1E-1 

50  100% 98% 100%  1E-1 

25  100% 96% 92%  1E-2 

15  97% 75% 80%  1E-4 

10  82% 64% 80%  1E-1 

5  92% 40% 20%  1E-1 

10 (Set)  96% 91% 90%  1E-3 

5 (Set)  100% 80% 80%  1E-1 
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(a)                                                     (b) 

 

 (c)                                                           (d) 

 

  (e)                                                           (f) 
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      (g)                                                           (h) 

 

     (i)       

Fig. 18. Confusion matrixes of the beam models for different number of sensors 

 

4.2.1. Uncertainty Analysis 

As it is known, the model error exists even for a well calibrated FEM model. This error may be 

caused by the boundary condition, distribution of the structural stiffness, uncertainty of material, 

etc. Moreover, the real structure might be subjected to environmental effects and operational 

states such as varying temperature and measurement noise [106]. PNN has noticeable merits in 

noisy conditions as it describes measurement data in a Bayesian probabilistic approach [117]. 

Despite this capability, adding noise to the data in order to simulate the error of the analytical 
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model and the effect of noise on the actual measurement vectors enhances the reliability of the 

proposed method. Thus, in this study, the calibration, validation and testing sets are polluted with 

random noise to simulate the performance of real sensors. To this aim, Gaussian noise with a 

mean value of zero and standard deviation equal to one standard deviation of the measured data 

is added to the input vectors. The noise pollution verification phase has been done only for the 

best models that are developed using 𝑍𝜇1, 𝑍𝜎1 , 𝑍𝜇2, and𝑍𝜎2 (see Table 3).  Different noise levels 

are taken for the analysis (5%, 10%, 20%, 30%, and 50%). The PNN algorithm is run for all the 

combinations shown in Table 6 with noise-polluted data. Table 7 and Fig. 19 visualize the best 

classification results for different number of sensors with various noise levels. Comparing the 

results shown in Tables 3 and 6, 7 and Fig. 19, it can be observed that increasing the noise level 

does not influence on the performance of the models on the calibration data. For the validation 

and testing data, the trends of the results are complicated. In these cases, it can be seen that the 

identification accuracies of the models gradually decrease with the increase of the noise level. 

The results for the testing data indicate that nearly all of the models have a good accuracy for 

noise levels up to 20%. On the other hand, the performance of the models subjected to higher 

noise levels, in particular 30 and 50%, does not remain satisfactory. This is more evident for the 

5 and 10 sensor numbers.   
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Table 7. The damage detection performance of the best models for beam for various noise levels 

Number of potential 

sensors 

 Damage Detection Performance 

(%) 

  

Noise 

Level 
Calibration Validation Testing 

 Optimal smoothing 

parameter 

 5% 100% 97% 97%  1E-2 

 10% 100% 96% 94%  1E-2 

150 20% 100% 94% 90%  1E-2 

 30% 100% 85% 83%  1E-2 

 50% 100% 78% 78%  1E-2 

 5% 100% 94% 97%  1E-2 

 10% 100% 92% 92%  1E-2 

100 20% 100% 90% 90%  1E-2 

 30% 100% 82% 86%  1E-2 

 50% 100% 72% 72%  1E-2 

 5% 100% 87% 94%  1E-2 

 10% 100% 81% 90%  1E-2 

50 20% 100% 89% 79%  1E-2 

 30% 100% 68% 65%  1E-2 

 50% 100% 58% 62%  1E-2 

 5% 100% 92% 92%  1E-2 

 10% 100% 69% 92%  1E-2 

25 20% 100% 65% 69%  1E-2 

 30% 100% 65% 62%  1E-2 

 50% 100% 35% 65%  1E-2 

 5% 100% 75% 73%  1E-2 

 10% 100% 69% 73%  1E-2 

15 20% 100% 69% 67%  1E-2 

 30% 100% 69% 60%  1E-2 

 50% 100% 38% 40%  1E-2 

 5% 96% 64% 70%  1E-1 

 10% 94% 55% 70%  1E-1 

10 20% 98% 55% 70%  1E-1 

 30% 98% 45% 40%  1E-1 

 50% 100% 45% 30%  1E-1 
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 5% 92% 60% 20%  1E-1 

 10% 100% 80% 20%  1E-1 

5 20% 100% 60% 0%  1E-1 

 30% 100% 20% 0%  1E-3 

 50% 100% 20% 0%  1E-3 

 5% 100% 73% 70%  1E-2 

 10% 100% 55% 70%  1E-2 

10 (Set) 20% 100% 64% 50%  1E-1 

 30% 98% 64% 30%  1E-1 

 50% 98% 36% 30%  1E-1 

 5% 100% 40% 80%  1E-1 

 10% 100% 40% 80%  1E-1 

5 (Set) 20% 100% 20% 60%  1E-1 

 30% 100% 40% 20%  1E-1 

 50% 100% 20% 20%  1E-1 
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Fig. 19. The damage detection accuracy of the best models versus the noise levels for different 

number of sensors  
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4.3. Damage Detection for the Gusset Plate  

The observations from the first stage of method verification provide valuable information to 

tackle the geometrically complicated case of gusset plate. For this case, in addition to the 

randomize configuration of the sensors, organized positioning of the sensors are also considered. 

As described in Section 3.2, the information for 448 data acquisition points is extracted for the 

analysis. However, considering high number of sensors is neither reasonable nor economic in 

practical applications. Thus, for the second stage of the performance verification, a maximum of 

224 sensors is taken into account. The analyses are performed with 224, 112, 56, and 28 

organized and randomly selected sensors. Similar to Case I, different pre-determined 

configuration schemes with 24, 28, 30, 42, 53, 57, and 64 sensors are also considered to assess 

the importance of locating the sensors at probable critical regions. Fig. 20 shows a schematic 

representation of the sensor configurations. In this figure, black and red cells represent the 

sensors. The red cells show the sensors that do not sense damage in all of the damage states. 

Since such sensors do not record any information, they are excluded from the analyses. The 

black cells define the active sensors. Based on the results obtained in the first stage (Table 3 and 

Fig. 17), it is revealed that X, Y, μ, and σ cannot be solely used for damage detection. Moreover, 

among different defined input features, 𝑍𝜇1 , 𝑍𝜎1, 𝑍𝜇2, and 𝑍𝜎2 are the most efficient damage 

indicator variables. Consequently, these four input features are used for detecting the damage 

states introduced to the gusset plate. The available data for each of the sensor configurations are 

randomly divided into three calibration (70% of the data), validation (15% of the data), and 

testing (15% of the data) subsets. The descriptive statistics of the μ and σ values for the entire 

elements is shown in Table 8. As discussed before, for each of the randomized sensor 

configurations, a number of repetitions are considered to guarantee that the models with the best 

performance on both the calibration and validation phases are developed. Evidently, this issue is 

of great importance for low number of sensors. 
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(a) 224 Organized Sensors (156 Active)                   (b) 112 Organized Sensors (75 Active) 

 

(c) 56 Organized Sensors (37 Active)                        (d) 28 Organized Sensors (17 Active) 

 

(e) 224 Randomized Sensors (168 Active)           (f) 112 Sensors (72 Active) 

 

(g) 56 Randomized Sensors (37 Active)           (h) 28 Sensors (17 Active) 

 

(i) 24 Sensors at Specified Locations           (j) 28 Sensors at Specified Locations 
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(k) 42 Sensors at Specified Locations           (l) 53 Sensors at Specified Locations 

 

(m) 57 Sensors at Specified Locations           (n) 64 Sensors at Specified Locations 

 

(o) 30 Sensors at Critical Location under the Notch 

Fig. 20. A schematic representation of the sensor configurations for the gusset plate 

 

Table 8. Descriptive statistics of the μ and σ values for the gusset plate 

Parameter μ σ 

Mean 1.68E-05 6.00E-06 

Median 1.68E-05 5.44E-06 

Standard Deviation 7.22E-06 1.19E-05 

Sample Variance 5.22E-11 1.42E-10 

Kurtosis 4.66E+02 1.75E+02 

Skewness -2.05E+01 1.15E+01 

Range 1.86E-04 2.31E-04 

Minimum -1.70E-04 9.73E-07 

Maximum 1.97E-05 2.32E-04 
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The number of neurons in the pattern layer of the PNN models made with 156, 75, 37, and 17 

organized (active) sensors is 1638, 788, 389, and 179, respectively. These numbers for the final 

models with 168, 72, 37, and 17 randomly selected (active) sensors are 1764, 830, 389, and 179, 

respectively. Moreover, for the pre-determined configuration schemes with 64, 57, 53, 42, 30, 

28, and 24 sensors, the number of neurons in the PNN’s pattern layer is 672, 588, 557, 441, 315, 

294, and 252, respectively. Neurons in the summation layer correspond to 15 damage patterns. 

Selection of the η values to find the optimal PNN models is based on extensive trial and error 

study. Furthermore, the algorithm is run several times to obtain a parameterization of PNN with 

enough generalization. A Gaussian function is adopted as the window function for the PNN 

algorithm. The best classification results for different number of sensors are presented in Table 9. 

In order to have an insight into the area covered by the sensors, the ratio of the area of sensors in 

each configuration to the area of the plate (Area Ratio) is also shown in Table 9. In order to 

visualize the detailed classification performance of the derived models on testing data, the 

corresponding confusion matrixes are given in Fig. 21. 

As it is seen, the model with 156, 75, 37, and 17 organized sensors have a very good 

performance on the calibration, validation and testing data. The performance of the models build 

for 168 and 72 randomly selected sensors is also very satisfying. As expected, the precision of 

the models decreases with decreasing the number of sensors. However, considering the Area 

Ratio values, it is seen that even for 168 randomized sensors, only 0.39% of the plate is covered 

by the sensors (less than 1%). This is indeed a very low rate for achieving such high detection 

accuracy. On the other hand, for the pre-determined configuration schemes, only 64 and 30 

sensors provide acceptable results. This indicates that organized and randomized distribution of 

the sensors can be a more effective strategy for increasing the detection precision. It is worth 

mentioning that by decreasing the number of damage classes, the accuracy of the models 

remarkably increases. For instance, the detection accuracy of the 17 organized sensors for 8 

damage classes is equal to 100%, 85% and 90% on the calibration, validation and testing data, 
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respectively. For the 37 active organized sensors, these values are, respectively, equal to 100%, 

91% and 86% on the calibration, validation and testing data. Thus, it is possible to reduce the 

number of sensors and yet have good detection accuracy by decreasing the number of damage 

classes.  

 

Table 9. The damage detection performance for the gusset plate using 𝑍𝜇1 , 𝑍𝜎1 , 𝑍𝜇2, and𝑍𝜎2 as 

the predictor variables 

 

  

Damage Detection Performance 

(%) 
    

 Number of 

potential 

sensors 
 

Calibration Validation Testing  
Area 

Ratio 
 

Optimal 

smoothing 

parameter 

O
rg

an
iz

ed
 

L
o
ca

ti
o
n
 

224 (156
*
) 

 
100% 87% 87%  0.390%  1E-5 

112 (75) 
 

100% 86% 90%  0.195%  1E-5 

56 (37) 
 

99% 66% 72%  0.097%  1E-4 

28 (17) 
 

100% 68% 76%  0.049%  1E-5 
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an

d
o
m

iz
ed

 

L
o
ca

ti
o
n
 

224 (168) 
 

99% 94% 94%  0.390%  1E-5 

112 (72) 
 

98% 86% 84%  0.195%  1E-5 

56 (37) 
 

99% 46% 53%  0.097%  1E-4 

28 (18) 
 

100% 30% 33%  0.049%  1E-4 

S
p

ec
if

ie
d
  

L
o

ca
ti

o
n
 

     
    

24  
 

100% 30% 33%  0.042%  1E-3 

28  
 

100% 37% 29%  0.049%  1E-3 

42  
 

100% 27% 38%  0.073%  1E-4 

53  
 

99% 51% 52%  0.092%  1E-2 

57  
 

99% 51% 52%  0.099%  1E-2 

64  
 

100% 74% 74%  0.111%  1E-2 

30
** 

 
98% 59% 66%  0.052%  5E-7 

 * The numbers in the parentheses represent the active sensors for each configuration. 

**The sensors are located under the notch. 
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                                           (a)                                                                 (b) 

 

                                          (c)                                                                  (d) 
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                                           (e)                                                                (f) 

 

 (g)                        

Fig. 21. Confusion matrixes of the best gusset plate models for different number of sensors 

 

4.3.1. Uncertainty Analysis 

In order to analyze the uncertainties in predictions, the calibration, validation and testing sets are 

polluted with random noise. Similar to the case of simply supported beam, Gaussian noise with a 

mean value of zero and standard deviation equal to one standard deviation of the measured data 

is added to the input vectors. The noise pollution verification phase has been done only for the 

best models shown in Table 9. That is, the models for 156, 75, 37, and 17 organized sensors, 168 
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and 72 randomly selected sensors, and 64 sensors at specified locations are chosen for the 

uncertainty analysis. Referring to the uncertainty analyses of the beam shown in Table 4, the 

performance of the models subjected to 30% and 50%noise levels is not satisfactory. Therefore, 

for the gusset plate case, only 5%, 10%, 20%, and 30%noise levels are considered. The PNN 

algorithm is run for all the chosen combinations. Table 10 and Fig. 22 present the best 

classification results for different number of sensors with various noise levels.  

Comparing the results shown in Tables 9 and 10 and Fig. 22, it is seen that increasing the noise 

level even up to 30% does not influence the performance of the models build for 168 and 72 

randomly selected sensors. Also, the performance of the models for 156 and 75 organized 

sensors is acceptable up to about 20% noise level. In all cases, it can be seen that the 

identification accuracies of the models gradually decrease with the increase of the noise level. 

Besides, the model for 64 sensors at specified locations has an acceptable accuracy only for 10% 

noise level.  

 

Table 10. The damage detection performance of the best gusset plate models for various noise 

levels 

  
Number of 

potential 

sensors 

 
Damage Detection Performance 

(%) 
  

  
Noise 

Level 
Calibration Validation Testing  

Optimal 

smoothing 

parameter 

   5% 85% 70% 70%  5E-3 

O
rg

an
iz

ed
  

L
o

ca
ti

o
n
 

  10% 80% 68% 69%  5E-3 

 156 20% 82% 68% 69%  5E-3 

  30% 83% 64% 65%  5E-3 

  5% 84% 73% 74%  1E-2 

  10% 88% 73% 72%  1E-2 

 75 20% 89% 72% 70%  1E-2 

  30% 89% 65% 69%  1E-2 

  5% 71% 54% 55%  1E-2 

  10% 79% 48% 54%  1E-2 

 37 20% 86% 52% 53%  1E-2 

  30% 90% 46% 53%  1E-2 

  5% 87% 53% 58%  1E-2 

  10% 94% 53% 53%  1E-2 

 17 20% 95% 53% 58%  1E-2 
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   30% 98% 53% 45%  1E-2 

         

R
an

d
o

m
iz

ed
  

L
o

ca
ti

o
n
 

  5% 94% 91% 91%  1E-2 

  10% 95% 92% 92%  1E-2 

 168 20% 95% 90% 88%  1E-2 

  30% 96% 86% 88%  1E-2 

  5% 95% 72% 70%  1E-3 

  10% 97% 75% 68%  1E-3 

 72 20% 91% 75% 69%  1E-2 

  30% 91% 71% 69%  1E-3 

         

         

S
p

ec
if

ie
d

 

L
o

ca
ti

o
n
   5% 95% 52% 59%  1E-3 

  10% 100% 49% 53%  1E-3 

 64 20% 99% 47% 43%  1E-3 

  30% 100% 35% 44%  1E-3 

         



47 | P a g e  

 

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50%

D
et

ec
ti

o
n

 P
er

fo
rm

a
n

ce
 (

%
)

Noise Level (%)

156 Organized Sensors

75 Organized Sensors

37 Organized Sensors

17 Organized Sensors

168 Randomized Sensors

72 Randomized Sensors

64 Specified Sensors

(a) Calibration Data

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50%

D
et

ec
ti

o
n

 P
er

fo
rm

a
n

ce
 (

%
)

Noise Level (%)

156 Organized Sensors

75 Organized Sensors

37 Organized Sensors

17 Organized Sensors

168 Randomized Sensors

72 Randomized Sensors

64 Specified Sensors

(b) Validation Data



48 | P a g e  

 

 

Fig. 22. The damage detection accuracy of the best models versus the noise levels for different 

number of sensors  

 

5. Discussion and Conclusions 

The present study proposes a new approach for the structural damage detection based on the 

simulation of the SWS data. New strategies are defined to interpret the limited data provided by 

the SWS. A probabilistic method is combined with FE to analyze the cumulative time 

distributions at preselected discrete strain levels. Two stages are considered for the performance 

verification of the proposed approach. At the first stage, the method is applied to detect different 

damage scenarios introduced to a simply supported beam under three-point bending. Thereafter, 

the efficiency of the method is examined against the complicated case of bridge gusset plate. 

Various descriptive features are extracted from the cumulative limited compressed static strain 

data and then input to the PNN models. Several analyses are performed with different number of 

organized and randomly selected sensors. Different phases are considered to verify the 

generalization of the derived models. Based on the results of the beam analysis, the models 

developed using coordinates of the sensors, μ and σ do not provide good detection accuracy. 

Also, the precision of the models expectedly decreases with decreasing the number of sensors. 
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Thus, new predictor features (i.e., 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 , 𝜎𝑆 , 𝑍𝜇1, 𝑍𝜎1, 𝑍𝜇2 , and 𝑍𝜎2) are defined that contain 

the information supplied by all the sensors in each specific sensor configuration. The results 

indicate that the performance of the models is improved by introducing the sensor group effect, 

even for low number of sensors. Consequently, it is found that 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 , 𝜎𝑆 , 𝑍𝜇1, 𝑍𝜎1 , 𝑍𝜇2, and 

𝑍𝜎2 contain useful information for the detection of the damage state of the investigated system. 

Besides, acceptable results are obtained for the case of limited number of sensors located in the 

mid-span of the beam and above the notch. Based on the results obtained in the first analysis 

stage, 𝑍𝜇1 , 𝑍𝜎1 , 𝑍𝜇2, and 𝑍𝜎2 are used for detecting damage states introduced to the gusset plate. 

The performance of the method for the gusset plate case is good, especially for higher number of 

sensors. In order to introduce uncertainty and simulate the performance of real sensors, Gaussian 

noise is applied to the data. Based on the noise pollution results, the performance of the models 

remains satisfactory even as the noise level is increased to 20%.  

However, there are still some challenges that are the focus of future research: 

a) The feasibility of utilization of the proposed damage detection approach for materials 

with plastic behavior.  

b) Considering different type of damages, as well as different type of structures for the case 

study of damage identification. Besides, future study can be focused on performance 

assessment of the proposed approach for damage localization. 

c) Development a process to find the optimal number of the memory cells of the wireless 

sensors to achieve the most appropriate strain pattern 

d) Although the FE simulation results still remain the standard for most of the elasticity 

problems [51], verification of the proposed approach with laboratory experiments would 

be an interesting topic for future study.  

e) The PNN algorithm utilized for damage classifications is a supervised learning method 

based on the labeled data. Future research may focus on detecting damage for the cases 

where the target classes are unknown. To this aim, unsupervised learning algorithms such 

as self-organizing map (SOM) seem to be the most efficient tools.  
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