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ABSTRACT
Wearable devices are increasingly becoming mainstream consumer
products carried by millions of consumers. However, the potential
impact of these devices is currently constrained by fundamental
limitations of their built-in sensors. In this paper, we introduce ra-
dio as a new powerful sensing modality for wearable devices and
propose to transform radio into a mobile sensor of human activities
and vital signs. We present BodyScan, a wearable system that en-
ables radio to act as a single modality capable of providing whole-
body continuous sensing of the user. BodyScan overcomes key
limitations of existing wearable devices by providing a contactless
and privacy-preserving approach to capturing a rich variety of hu-
man activities and vital sign information. Our prototype design of
BodyScan is comprised of two components: one worn on the hip
and the other worn on the wrist, and is inspired by the increasingly
prevalent scenario where a user carries a smartphone while also
wearing a wristband/smartwatch. This prototype can support daily
usage with one single charge per day. Experimental results show
that in controlled settings, BodyScan can recognize a diverse set
of human activities while also estimating the user’s breathing rate
with high accuracy. Even in very challenging real-world settings,
BodyScan can still infer activities with an average accuracy above
60% and monitor breathing rate information a reasonable amount
of time during each day.
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1. INTRODUCTION
Wearable devices are growing in popularity at a tremendous rate.

The global market of wearable devices is expected to reach a value
of 19 billion U.S. dollars in 2018, which is more than ten times
its value five years prior [11]. Today, millions of people wear fit-
ness trackers such as Fitbit on a daily basis to track steps, calories
burned and sleep [5]. Apple, Google, and Samsung release smart-
watches which provide an alternative interface for people to get no-
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tifications, respond to text messages, and make phone calls while
keeping their smartphones inside pockets [3, 1, 10].

We envision that wearable devices could have a much broader
impact on our daily lives beyond tracking steps and sleep as well as
being an alternative interface of smartphones. Unfortunately, a key
bottleneck that limits their impact is the constraints of the built-in
sensors in existing wearable devices. Specifically, IMUs (i.e., ac-
celerometers and gyroscopes) can only sense motions and rotations
of body parts to which they are attached. As such, it requires users
to wear multiple IMUs to capture whole-body movements. Mi-
crophones and image sensors can sense rich information but at the
same time they also capture privacy-sensitive data that may cause
severe privacy concerns. Physiological sensors such as respiration
and ECG sensors are intrusive in that they must be placed at certain
body locations and require tight skin contact to function. Motivated
by those limitations, this work is aimed at pushing the boundaries
of wearable devices by exploring new sensing modalities that are
contactless and privacy-preserving while still being able to provide
rich information about users and their context.

In recent years, radio-based sensing systems have drawn con-
siderable attention because they provide a contactless and privacy-
preserving approach to monitor a variety of human activities such
as walking [50], cooking [49] and falling [19] as well as vital signs
such as breathing and heartbeats [14, 31, 51]. These systems utilize
radio transmitters and receivers that are deployed in the ambient en-
vironment. However, due to their dependence on the ambient wire-
less infrastructure, these infrastructure-based systems have three
key limitations. First, they can only capture activities and vital
signs when people are in the area covered by the ambient wireless
infrastructure. Second, their sensing performance degrades when
ambient environment changes (e.g., new or moved furniture) or the
distance between radio transmitters/receivers and the person being
monitored increases. Third, when there is more than one person
in the monitored area, activities performed by different individuals
interfere with each other, making robust activity recognition ex-
tremely challenging.

In this paper, we introduce BodyScan, a novel wearable sens-
ing system that uses radio as a single sensing modality for contin-
uous human activity and vital sign monitoring. BodyScan over-
comes the aforementioned limitations of infrastructure-based sys-
tems. Specifically, BodyScan utilizes radio transmitter and receiver
in the form of wearables. As such, it does not require the support
of ambient wireless infrastructure and thus enables continuous and
ambulatory human activity and vital sign monitoring in all indoor,
in-vehicle, and outdoor scenarios. In addition, the wearable ra-
dio transmitter and receiver are always within close proximity to
the user. As a result, the interference caused by the ambient envi-
ronment as well as activities performed by surrounding people are
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dwarfed by the activity performed by the user, making BodyScan
robust to various extraneous interference.

BodyScan is designed to emulate an increasingly prevalent sce-
nario where a user carries a smartphone while wearing a wristband
or a smartwatch at the same time. Figure 1 illustrates BodyScan be-
ing worn by a user in such scenario. As shown, BodyScan consists
of two custom-made wearable devices. One device is a wristband
containing a radio transmitter that continuously transmits radio sig-
nals. The other device is a wearable unit emulating a smartphone,
which is worn on the hip containing a radio receiver that continu-
ously receives radio signals. With the prevalence of smartphones
and the increasing popularity of wristbands and smartwatches, we
envision that this scenario will become more and more common in
the near future. As such, we believe our design has the potential to
be widely accepted by the general public.

Based on the design, BodyScan uses radio as a single sensing
modality to provide a unified human activity and vital sign sens-
ing solution in the wearable setting. The basic idea of BodyScan is
that movements of different parts of the human body caused by dif-
ferent human activities generate different changes on radio signals
that are observable at the radio receiver. By analyzing the changes
on the received radio signals, the activity that causes the changes
can be recognized. To capture the movements of different parts
of the human body by just using the wristband and wearable unit,
BodyScan uses two custom-designed directional antennas at the ra-
dio receiver to track upper body and lower body movements respec-
tively. To analyze the received radio signals, BodyScan exploits
the fine-grained Channel State Information (CSI) extracted from
the received radio signals, and adopts a tree-structured radio sig-
nal processing pipeline that combines upper body and lower body
movement information for activity recognition as well as breathing
rate estimation. The algorithms involved in the signal processing
pipeline are energy-efficient and lightweight to run on resource-
constrained wearable platforms in real time.
Summary of Experimental Results: We built a lightweight small
form-factor prototype of BodyScan and evaluated its performance
by conducting experiments in both controlled and uncontrolled set-
tings. With more than 40 hours of data collected from seven sub-
jects, the results of our experiments show that:
• In controlled settings, BodyScan achieves an average classifi-

cation accuracy of 72.3% for recognizing five most common
activities of daily living (ADLs). When the subjects are sta-
tionary, it achieves an average accuracy of 97.4% for estimating
subjects’ breathing rates.

• BodyScan is capable of achieving real-time activity recognition
and breathing rate estimation. It can continuously run more
than 15 hours, which is sufficient for daily usage with one single
charge per day.

• When deployed in the real world, BodyScan achieves an ac-
tivity recognition accuracy of 60.2% and can opportunistically
sense a user’s breathing information a reasonable amount of
time each day.

Summary of Contributions: We introduce the first wearable sens-
ing system that uses only a single pair of on-body radio transmitter
and receiver to monitor a wide range of human activities and vital
sign in a unified framework. BodyScan takes an audacious step to-
wards enabling radio-based sensing on wearable devices. It demon-
strates the benefits over existing wearable devices including im-
proved privacy protection by reducing the need for the use of cam-
eras and microphones as well as enhanced comfort and usability by
providing a contactless sensing solution and lowering the number

ESP Wristband as 
Radio Transmitter HMB Wearable Unit 

as Radio Receiver

Figure 1: The user model of BodyScan. BodyScan consists of two devices:
one worn at the wrist and the other worn on the hip. This design choice em-
ulates an increasingly prevalent scenario where a user carries a smartphone
while wearing a wristband or a smartwatch at the same time.

of on-body sensors necessary. It also demonstrates the practicality
of real-world usage including real-time signal processing as well
as long-lasting battery life. Taken together, we believe radio-based
wearable sensing systems have tremendous potential to be widely
adopted in real world and open up new applications in areas such as
mobile health, human-computer interaction, and social computing.

2. DESIGN CONSIDERATIONS
In this section, we first describe the design goals that BodyScan

aims to achieve. To achieve these goals, BodyScan needs to address
a number of challenges. We discuss these challenges and then ex-
plain how we tackle these challenges in the design of BodyScan.
Based on the design goals, we list the taxonomy of human activi-
ties and vital signs which BodyScan aims to capture and recognize.

2.1 Design Goals
The following goals are central to the design of BodyScan:

• Sensing Human Activities and Vital Signs using a Single
Sensing Modality: BodyScan is designed to sense and recog-
nize a wide range of human activities and track vital signs using
radio as a single sensing modality. Existing wearable sensing
systems typically adopt a multimodal sensing approach where
more than one sensing modality is employed to capture human
activity and vital sign information. For example, physical activ-
ities can be sensed by accelerometers while vital signs such as
heartbeat can be tracked by a separate pulse oximeter. However,
the multimodal sensing approach requires users to wear more
than one sensor on different parts of the body, which is a sig-
nificant burden to users. In contrast, BodyScan aims to capture
both human activity and vital sign information using radio only.
BodyScan addresses this single sensing modality challenge by
noting that both human activity and vital sign information are
embedded in the radio signals but they exhibit their unique pat-
terns. Hence, BodyScan utilizes a tree-structured signal pro-
cessing pipeline that uses different schemes to extract the em-
bedded human activity and vital sign information, respectively.

• Enabling Whole-Body Sensing with One Pair of Wearable
Radio Transmitter/Receiver: BodyScan is designed to cap-
ture whole-body movements by using a single pair of on-body
radio transmitter and receiver. Human activities involve move-
ments from different parts of the body. To capture those move-
ments by using a single pair of on-body radio transmitter and
receiver, one straightforward approach is to use omnidirectional
antenna at both transmitter and receiver. However, this ap-
proach is limited when movements from different parts of the
body have similar influences on radio signals. To address this
challenge, BodyScan adopts a design that incorporates two di-
rectional antennas at the receiver end, with one directional an-
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Figure 2: The system architecture of BodyScan.

tenna pointing upward to detect upper body movements while
the other directional antenna pointing downward to detect lower
body movements. BodyScan then combines the upper body
and lower body movement information to obtain a complete
picture of the whole-body movements. Based on this design,
BodyScan achieves a higher resolution so that activities which
involve movements from different parts of the body can be bet-
ter differentiated.

• Resilient to Noises from Environment and Nearby People:
BodyScan is designed to be resilient to noises from ambient en-
vironment as well as nearby people. This requires BodyScan
to be able to filter out radio signals reflected back from the
environment and nearby people. To address this challenge,
BodyScan uses conical horn antennas as its directional anten-
nas. Compared to the most commonly used patch antenna, con-
ical horn antenna has a narrower beamwidth, making it more
focused on the body areas of the user. As a result, radio re-
flections caused by ambient environment and nearby people are
less likely to be captured by the conical horn antennas, making
BodyScan more robust to noises.

• Operating on Resource-Constrained Platform: BodyScan is
designed to be able to perform real-time and energy-efficient
human activity recognition and vital sign monitoring on resource-
constrained wearable platforms. To address this challenge, the
tradeoff between computational complexity and real-time/power
consumption performance is taken into serious considerations
in the design of BodyScan. Specifically, BodyScan adopts a
lightweight radio signal processing pipeline to reduce the com-
putational complexity. The pipeline uses Principal Component
Analysis (PCA) to reduce the dimensionality of the raw multi-
subcarrier CSI measurements; it avoids computationally expen-
sive features and extracts activity information directly from the
empirical cumulative distribution function (ECDF) of the radio
signals; finally, it utilizes a low computational cost fusion tech-
nique that combines movement information from both upper
body and lower body to infer the performed activity.

To the best of our knowledge, no existing wearable sensing sys-
tems can meet all of the above design goals. This motivates us to
design and develop BodyScan to fill this critical gap.

2.2 Target Human Activity and Vital Sign
To fully examine the feasibility and explore the potential of our

BodyScan system, we have compiled a rich and diverse set of hu-
man activities and vital sign based on our design goals. We group
them into six different categories which are listed in Table 1. We
select these six categories for three main reasons. First, many ac-
tivities included in the six categories such as walk, brush teeth, and
type on a keyboard represent the most common activities performed
in our everyday life. Second, the breadth of the considered activ-

Category Class
Physical walk, run

Activities (P)
Transportation ride a bike, drive a car

Mode (T)
Hand-related brush teeth, type on a phone, type on a keyboard,
Activities (H) shake hands
Free-weight tricep press, front raise, bent-over row, bicep curl,

Exercises (E) chest fly
Isolated Body (I) curl left/right arm, swing left/right leg, shake head,
Part Movements bend over
Vital Sign (V) breathe

Table 1: The taxonomy of the target human activity and vital sign.

ities enables us to explore the potential and to have a better un-
derstanding of the limitations of radio-based activity recognition in
the wearable setting. Specifically, we include activities that involve
lower body movements only such as ride a bike; upper body move-
ments only such as shake hands; whole-body movements such as
run; as well as isolated body part movements such as shake head.
Finally, we only include breathe in the category of vital sign be-
cause we could not reliably detect heart beats and provide accurate
heartbeat rate estimation due to the low signal-to-noise ratio (SNR)
of the current version of BodyScan.

3. BodyScan OVERVIEW
The system architecture of BodyScan is illustrated in Figure 2.

As shown, BodyScan consists of a wearable platform as well as a
radio signal processing pipeline that runs inside the platform.

The Wearable Platform consists of two lightweight small form-
factor hardware devices worn on the human body: (1) an ESP wrist-
band (44 x 40 x 8 mm; 35 g) that is designed to be worn on the
wrist; and (2) a Hummingboard Pro (HMB) wearable unit (50 x
90 x 140 mm; 200 g) that is designed to be worn on the hip. The
ESP wristband acts as the radio transmitter that continuously trans-
mits radio signals while the HMB wearable unit acts as the radio
receiver that continuously receives radio signals. In particular, the
HMB wearable unit incorporates two conical horn directional an-
tennas, with one detecting the upper body movements (i.e., upper
body antenna) and the other detecting the lower body movements
(i.e., lower body antenna). Based on this design, BodyScan is able
to capture whole-body movements by just using the wristband and
the wearable unit.

The Radio Signal Processing Pipeline adopts a tree-structured
architecture to provide a unified framework for human activity recog-
nition and breath monitoring. At the input, BodyScan extracts
multi-subcarrier CSI amplitude measurements from the received
packets at both upper and lower body antennas and uses a sliding
window to continuously partition the streaming CSI measurements
into fixed-length segments. The segment is set to be five seconds
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Figure 3: The ESP wristband and HMB wearable unit prototype.

long with 50% overlap. The segmented CSI measurements are pro-
cessed by the Preprocessing module to filter out noises that are not
caused by the body movements as well as to extract the most dom-
inant changes that are caused by the body movements. The pre-
processed segments from both upper and lower body antennas are
then fed into the Motion Detection module to identify whether the
segments contain upper body or lower body movements caused by
human activities. If no movements from both upper and lower body
are identified over 15 seconds, the user is determined to be station-
ary and a power spectral density (PSD)-based scheme is used in
the Breath Monitoring module to extract the breathing rate infor-
mation from the 15 seconds CSI measurements of the upper body
antenna. Otherwise, the preprocessed segments are fed into the Ac-
tivity Recognition module to be further classified into specific type
of the target human activity by fusing upper body and lower body
movement information.

In §4 and §5, we describe the design of wearable platform and
the radio signal processing pipeline in details.

4. WEARABLE PLATFORM

4.1 ESP Wristband as Radio Transmitter
Figure 3(a) and 3(b) illustrate the assembled ESP wristband and

its individual components respectively. The core component of the
ESP wristband is the Espressif ESP8266, a low-power wireless SoC
engineered for mobile applications [4]. We connect the ESP8266 to
a custom-made small form-factor PCB (35 x 15 mm; 3 g) powered
by an external 700 mAH battery. Both the PCB and the battery are
housed inside an 3D printed case in the form of a wristband.

The ESP wristband acts as the radio transmitter in our BodyScan
system. Radio connection with the HMB wearable unit is estab-
lished based on the 802.11n protocol over 2.4 GHz band. We pro-
gram the ESP wristband to operate in WiFi AP host mode and ac-
cept wireless connections only from the HMB wearable unit. Once
a connection is established, the ESP wristband begins transmitting
standard ping packets to the HMB wearable unit continuously. The
transmission rate of the ping packets is set to 200 Hz by default.

4.2 HMB Wearable Unit as Radio Receiver
Figure 3(c) illustrates the assembled HMB wearable unit. As an

overview, the HMB wearable unit consists of two custom-designed

directional antennas attached at the top and bottom of the wearable
unit respectively, a Hummingboard Pro (HMB) device [6], and a
5000 mAH battery. The HMB device is a lightweight small form-
factor (85 x 56 mm; 78 g) ARM-based mini-computer that contains
an on-board 1.2 GHz ARM Cortex-A9 processor. Both the HMB
device and the battery are housed inside an 3D printed case that is
designed to be attached to the hip of the user.

The HMB wearable unit acts as the radio receiver in our BodyScan
system. We connect the HMB device with an Intel WiFi Link 5300
network interface card (NIC) [7] via a micro PCIe socket to collect
CSI measurements (see Figure 3(d)). Once the radio connection
with the ESP wristband is established, the HMB wearable unit be-
gins receiving wireless packets continuously.

In the following, we describe the details of our custom-designed
directional antennas as well as the antenna switching scheme that
enables whole-body sensing with one pair of radio transmitter/receiver.

4.2.1 Directional Antenna Design
Design Rationale: Different human activities involve movements
from different parts of the body. For example, type on a keyboard
involves hand and finger movements from the upper body; ride a
bike involves intense leg movements from the lower body; and run
involves intense arm swings and leg movements from both the up-
per and lower body. To capture those movements, we adopt a dual-
directional antenna design by using two conical horn directional
antennas and mounting them on the top and bottom of the HMB
wearable unit respectively (see Figure 3(c)). When the HMB wear-
able unit is worn on the hip of the user horizontally, one directional
antenna is pointing toward the upper body and the other directional
antenna is pointing toward the lower body. As such, the movements
of both upper and lower parts of the body can be captured by our
HMB wearable unit.

One important design consideration based on our dual-directional
antenna design is the radiation angle of the directional antenna. Op-
timally, our dual-directional antennas should be able to capture all
the movements involved in the performed activity from both the
upper and lower body. At the same time, they should also be robust
to interferences by not capturing radio reflections from ambient en-
vironment and nearby people. Figure 4 illustrates this design con-
sideration by showing three scenarios where directional antennas
have different radiation angles. Specifically, Figure 4(a) illustrates
the scenario where the antenna has a narrow radiation angle. Al-
though a narrow radiation angle is favored in terms of not covering
the person spaced with social distance (i.e., 1.2 meters to 2.1 meters
[24]), it fails to cover some parts of human body such as shoulders
and arms. On the other hand, Figure 4(b) illustrates the scenario
where the antenna has a wide radiation angle. Although the wide
radiation angle has a full coverage of the whole body, it also covers
the nearby people, making the antenna susceptible to interferences.
Therefore, a dual-directional antenna design with a radiation angle
neither too narrow nor too wide (Figure 4(c)) is desired.

Design Choice and Implementation: In antenna design, the half-
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User
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Abundant Coverage

Upper Body 
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Lower Body 
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Coverage

No
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Figure 4: Illustration of three scenarios where directional antennas have
different radiation angles.
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Figure 5: Illustration of the simulated radiation patterns of the designed
conical horn directional antenna in both 3D space (left) and 2D plane
(right). The 3D radiation pattern is characterized by a single main lobe ra-
diated out from the front of the antenna and three back lobes. The 2D plane
pattern depicts the elevation plane pattern obtained by slicing through the
y-z plane of the 3D radiation pattern. The maximum gain of the designed
conical horn directional antenna is 8.9 dB and the HPBW is 60 degrees.

power beamwidth (HPBW) is the metric used to define the radiation
angle of an antenna. HPBW is defined as the the angular separation
in which the magnitude of the radiation pattern decreases by 50%
(i.e., -3.0 dB) from the peak of the main lobe. In our design, the
HPBW of our two conical horn directional antennas is set to 60
degrees. As such, when the HMB wearable unit is worn on the hip
of the user, the scenario illustrated in Figure 4(c) is achieved.

Based on our design choice, we used the commercial antenna
design tool ANSYS HFSS to design and simulate our conical horn
directional antenna [2]. Figure 5 illustrates the simulated radiation
patterns of our conical horn directional antenna in both 3D space
(left) and 2D plane (right). The 3D radiation pattern shown on the
left is characterized by a single main lobe radiated out from the
front of the antenna and three back lobes. The beamwidths of the
main lobe in the azimuth and elevation planes are similar which re-
sults in a fairly circular beam. The 2D plane pattern plotted in polar
coordinates is shown on the right. It depicts the elevation plane pat-
tern which is obtained by slicing through the y-z plane of the 3D
radiation pattern. As shown, the maximum gain of our conical horn
directional antenna is 8.9 dB and the HPBW is 60 degrees. Finally,
we 3D printed our design to implement our conical horn antennas.

4.2.2 Antenna Switching Scheme
Our HMB wearable unit is equipped with two conical horn di-

rectional antennas as receiving antennas, with one mounted at the
top and the other mounted at the bottom. However, although the
Hummingboard Pro device has three on-board antenna interfaces,
to reliably receive radio packets, only one antenna interface can be
used at one time. To support our dual-directional antenna design,
we connect two conical horn directional antennas to two antenna
interfaces on the Hummingboard Pro device, and adopt an antenna
switching scheme by alternating the access to the two receiving
antennas. As such, radio packets can be reliably received at both
receiving antennas using one Hummingboard Pro device.

5. RADIO SIGNAL PROCESSING PIPELINE

5.1 Channel State Information Extraction
Today’s wireless devices that support IEEE 802.11a/g/n/ac stan-

dards use the Orthogonal Frequency Division Multiplexing (OFDM)
as their modulation scheme [21]. An OFDM modulated wireless
channel consists of multiple closely spaced narrowband subcarriers
at different frequencies. The Channel State Information (CSI) are
measurements that describe both the amplitude frequency response
as well as the phase frequency response of the wireless channel
at the subcarrier level [29]. Compared to the conventionally used
Received Signal Strength Indicator (RSSI) that provides a single

measurement of the received signal power averaged over the entire
channel, the CSI measurements contain more fine-grained informa-
tion of the wireless channel.

BodyScan leverages the fine-grained CSI measurements provided
by modern wireless devices to capture whole-body movements caused
by different activities as well as specific chest movements caused
by inhaling and exhaling due to breathing. We installed the mod-
ified firmware released by the CSI measurement tool [17] through
the Debian Cubox-i Linux OS running on the Hummingboard Pro
device at the receiver end, enabling the Intel WiFi Link 5300 NIC
to extract CSI measurements from the received packets. Because
the CSI phase measurements are reported to be unreliable due to
the low-cost hardware components of the commodity wireless de-
vices [37], BodyScan only uses the CSI amplitude measurements
for signal processing.

5.2 Preprocessing

5.2.1 Noise Removal
The extracted CSI measurements are very noisy in the raw form.

It is necessary to filter out the noises before meaningful body move-
ment information can be extracted from the CSI measurements.
We observe that the changes of CSI measurements caused by body
movements lie at the lower end of the frequency spectrum. There-
fore, BodyScan uses a Butterworth low-pass filter on the raw CSI
measurements from all the subcarriers to remove high frequency
noises that are unlikely to be caused by human body movements.
The cut-off frequency of the low-pass filter is set to 20 Hz.

5.2.2 Dimension Reduction
Body movements cause changes on the CSI measurements across

all the subcarriers in the wireless channel. As an example, Figure
6 illustrates the CSI amplitude measurements of four different sub-
carriers from a sample of five-second walk activity. There are two
key observations that we could obtain from the figure. First, the
CSI amplitude measurements across the four subcarriers are highly
correlated. Second, different subcarriers have different sensitivity
to body movements. Based on these observations, BodyScan uti-
lizes the Principle Component Analysis (PCA) to extract principal
components (PCs) from the filtered CSI amplitude measurements
across all the subcarriers. The PCs capture the most dominant
changes caused by the body movements while removing the re-
dundant information due to the high correlation across subcarriers.

As one of the design goals, BodyScan is designed to be able
to operate on resource-constrained wearable platforms. To reduce
the computational complexity, only the first PC with the largest

(a) Subcarrier #5 (b) Subcarrier #6

(c) Subcarrier #23 (d) Subcarrier #27

Figure 6: Correlation and sensitivity differences across subcarriers.
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magnitude of variation is retained in the signal processing pipeline.
As such, the high-dimensionality multi-subcarrier CSI amplitude
measurements are transformed into a univariate time series.

5.3 Motion Detection
The role of the Motion Detection module is to detect whether a

segment of CSI measurements contains body movements caused by
human activities or not. Figure 7 illustrates the first PC of the CSI
measurements from walk activity and from sit on a sofa. Both seg-
ments of the CSI measurements are collected from the upper body
antenna. We observe that body movements caused by walk activity
generate much more significant changes on the CSI measurements
than sit on a sofa. Based on this observation, we define motion
indicator as the variance of the first PC of the CSI measurements
and employ a threshold-based method based on motion indicator to
determine whether a user is performing some activity or is station-
ary. Figure 10 shows the values of motion indicator of four target
human activities (i.e., walk, shake head, type on a phone, and bent-
over row) as well as being stationary from both upper body antenna
(Figure 10(a)) and lower body antenna (Figure 10(b)). As shown,
although the values of motion indicator of four target human activ-
ities vary across a wide range, they are much higher than those of
being stationary. Given the data we have collected in this work, we
empirically determine the threshold value of motion indicator to be
4.3 for upper body antenna and 3.8 for lower body antenna, respec-
tively. Based on these two threshold values, we adopt an One Ticket
Veto protocol for motion detection. Therefore, a human activity is
detected if the motion indicator value of either upper or lower body
antenna is higher than its corresponding threshold.
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(a) Motion indicator values from
upper body antenna.
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(b) Motion indicator values from
lower body antenna.

Figure 10: Illustration of the motion indicator values of four human activ-
ities and being stationary from upper and lower body antenna, respectively.

5.4 Breath Monitoring
To build our Breath Monitoring module, we leverage the fact

that humans, when stationary (e.g., standing still, watching TV on a
sofa), are exhibiting minute and periodic chest movements caused
by inhaling and exhaling due to breathing [14, 31, 51]. Figure 8
illustrates the first PC of the CSI measurements collected from
the upper body antenna when the user is stationary. As shown,
the curve of the first PC presents an evident periodic up-and-down
changing pattern over time. This observation indicates that the pe-

riodic chest movements caused by breathing, though minute, can
be captured by the first PC of the CSI measurements. Therefore,
we harness this fine granularity provided by the CSI measurements
to capture those minute and periodic chest movements to estimate
a user’s breathing rate.

In particular, we use power spectral density (PSD) to extract the
breathing rate information from the CSI measurements in the fre-
quency domain [31, 51]. The PSD of the CSI measurements il-
lustrates how power is distributed at each frequency component of
the CSI measurements [46]. The rationale behind our PSD-based
breathing rate estimation scheme is that the dominant frequency of
the chest movements contains the most power across the frequency
domain, and the dominant frequency can be used as an estimation
of the user’s breathing rate. Figure 9 depicts the PSD of the time do-
main signal illustrated in Figure 8. As shown, there is a strong peak
representing the dominant frequency with the power of 26.9 dB at
0.19 Hz, which corresponds to an estimated breathing rate of 11.4
breaths per minute (bpm). This estimated breathing rate is within
the range of breathing rates of children, adults and elderly from 8
bpm (0.133 Hz) to 30 bpm (0.5 Hz) [44, 30]. Therefore, when the
user is stationary, our breathing rate estimation scheme calculates
the PSD of the first PC of CSI measurements over 15 seconds, and
determines the user’s breathing rate by identifying the highest peak
in the PSD within the considered breathing rate range.

5.5 Activity Recognition
Our Activity Recognition module consists of two components:

a lightweight classification scheme based on empirical cumulative
distribution function (ECDF) representation and a low computa-
tional cost multi-antenna fusion scheme that combines classifica-
tion results from the upper and lower body antennas.

5.5.1 Classification Scheme
One of the design goals of BodyScan is to perform real-time and

energy-efficient activity recognition on resource-constrained wear-
able platforms. To achieve this goal, we purposely avoid computa-
tionally expensive features and extract activity information directly
from the ECDF of the preprocessed CSI measurements from both
upper and lower body antennas. ECDF is able to capture the de-
tailed information of CSI measurement distribution that simple sta-
tistical features such as mean or standard deviation can not capture.
In addition, because of its low computational cost, ECDF is partic-
ularly suitable for resource-constrained wearable platforms [18].

Specifically, the ECDF of activity class i is defined as

P (i)
c (x) = P (i)(X ≤ x) (1)

where x covers the whole range of CSI measurement values ob-
served in activity class i and P (i)

c (x) represents the left integral
of the distribution of activity class i with value ranging from 0 to
1 [47]. In our ECDF-based classification scheme, we capture the
shape of the ECDF curve of activity class i by selecting d points
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equally spaced between 0 and 1. For each of those points pj , we
derive the value xj for which P (i)

c (xj) = pj . Finally, we use these
d derived values to construct a d-dimension feature vector, and uti-
lize Support Vector Machine (SVM) with probabilistic outputs as
the classifier for classification [40].

5.5.2 Multi-Antenna Fusion
As the last stage of our signal processing pipeline, given the

separate classification results derived from upper and lower body
movements respectively, we design a fusion scheme that combines
the classification results together to infer the performed activity.

Specifically, let P (i)
u denote the probability of the performed ac-

tivity classified as class i based on the upper body movements; and
P

(i)
l denote the probability of the performed activity classified as

class i based on the lower body movements. Assuming upper and
lower body movements are independent from each other, the prob-
ability of the performed activity classified as class i is

P
(i)
wholebody = (P (i)

u )
varu

varu+varl · (P (i)
l )

varl
varu+varl (2)

where varu is the variance of CSI measurements collected by up-
per body antenna and varl is the variance of CSI measurements
collected by lower body antenna. The rationale behind our fusion
scheme is that since radio signal variation indicates the occurrence
of body movements, higher radio signal variation indicates more
movements are involved from a particular body part. As such, the
weights assigned to classification probability based on upper and
lower body movements are determined by their corresponding ra-
dio signal variation ratio. Therefore, the performed activity is clas-
sified to the activity class which has the highest Pwholebody .

6. EXPERIMENTAL EVALUATION
We have conducted a set of experiments to evaluate the perfor-

mance of BodyScan. We break down the whole evaluation into
three parts. The first part focuses on benchmarking the performance
of BodyScan on activity recognition and breathing rate estimation
in controlled settings. We also conduct another four experiments
to examine the impact of various factors on the activity recognition
performance. These factors include radio frequency interference,
interference from nearby people, radio signal transmission rate, and
antenna configuration. The second part examines the system per-
formance of BodyScan prototype in terms of runtime performance,
power consumption, and battery lifetime. Finally, the third part in-
volves a five-day deployment study that examines the efficacy of
BodyScan in real-world settings.

6.1 Benchmark Evaluation
6.1.1 Experimental Setup

Subjects: We recruited seven subjects (two females) who volun-
teered to help collect data and conduct evaluation experiments. The
subjects are university students and researchers between 25 to 37 (µ
= 29.2) years old, weighted between 49 kg to 82 kg (µ = 74 kg) and
were between 158 cm to 182 cm tall (µ = 172 cm).
Experimental Environment: All the experiments were conducted
in controlled settings in both laboratory and outdoor environment.
During the experiments, we used WireShark [12] configured in the
promiscuous mode to sniff the transmitted packets to monitor the
radio frequency interference (RFI) in the environment. To create
a clean environment for the subjects to collect radio data using
BodyScan, all the wireless devices in the laboratory were turned
off. When collecting data in outdoor environment, locations where

RFI was limited were selected. On average, the RFI in the environ-
ment during our experiments was 3.3 packets per second (p/s).
Data and Ground Truth Collection: Throughout the experiments,
the subjects were requested to wear the ESP wristband on the left
wrist and the HMB wearable unit on the right hip. To collect activ-
ity data, the subjects were instructed to perform the activities listed
in Table 1 sequentially. Specifically, the data of ride a bike, drive
a car and run was collected in outdoor environment while the data
of all other target activities was collected in the laboratory. In the
meantime, one researcher acted as an observer to record the ground
truth. To collect breathing data, the subjects were instructed to sit
still on a chair in the laboratory and breathe naturally. At the same
time, the subjects were also asked to wear the NeuLog Respiration
Monitor Belt Logger Sensor [9] around the lower ribs to obtain the
ground truth measurements of their breathing rates. Figure 14 il-
lustrates this setup. In total, 269 mins of data was collected from
all seven subjects and was manually labeled. Table 2 breaks down
the amount of data for each of the six categories.

Benchmark Evaluation Deployment Study
Type P T H E I V Labeled Unlabeled
Time 63m 43m 70m 25m 36m 32m 86m 2413m
Total 269m 2499m

Table 2: The breakdown of the amount of data collected for benchmark
evaluation and deployment study (see Table 1 for data type abbreviations).

6.1.2 Performance of Motion Detection
First, we evaluate the performance of motion detection scheme.

As our ground truth, all the data from the categories of P, T, H, E,
and I are regarded as moving while the data from the category V is
regarded as stationary. The confusion matrix of motion detection
is presented in Table 3. We observe that the true positive rates of
both moving and stationary are very high, indicating that our mo-
tion detection scheme can accurately determine whether users are
stationary or performing activities in most cases. We also observe
that the false positive rate of moving is relatively higher than the
false positive rate of stationary. This is because some target activi-
ties such as type on a keyboard involve intermediate pauses.

Ground Truth/Predicted (G/P) Stationary Moving
Stationary 98.2% 1.8%

Moving 7.1% 92.9%

Table 3: Confusion matrix of motion detection.

6.1.3 Performance of Breathing Rate Estimation
Second, we evaluate the performance of our breathing rate es-

timation scheme. We collected approximately 32 mins of data in
total from all seven subjects. Each subject performs 18 trials of
breathing, each lasting for 15 seconds. Figure 11 illustrates the
accuracies of estimated breathing rates of all seven subjects. As

HMB Wearable Unit
NeuLog Sensor 

Module

ESP
Wristband

NeuLog Belt 
Sensor

NeuLog 
Respiration Logger

Figure 14: Data and ground truth collection for breathing rate estimation.
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Figure 11: Breathing rate estimation accuracy. Figure 12: Activity recognition accuracy. Figure 13: Impact of RFI.

shown, except Subject 7, the average accuracy of the estimated
breathing rates over the other six subjects is 97.4%. This indicates
that when the user is stationary, BodyScan is capable of estimating
the breathing rate of the user at a very high accuracy despite the
differences in gender, age, weight, and height. For Subject 7, the
average accuracy drops to 78.1%. This is because during testing,
the directional antenna did not point at the upper body of Subject 7
by accident. As such, the directional antenna failed to capture the
minute chest movements of Subject 7.

6.1.4 Performance of Activity Recognition
Most Common Activities of Daily Living (ADLs): As the first
experiment for our activity recognition evaluation, we evaluate the
performance of our activity recognition scheme for recognizing five
most common activities of daily living (ADLs). These ADLs in-
clude walk, brush teeth, type on a phone, shake hands, and type on
a keyboard. We collected a total of 70 mins of data of five most
common ADLs from seven subjects. The performance is evaluated
using leave-one-subject-out validation.

Figure 12 illustrates the average activity recognition accuracies
across five ADLs for all seven subjects. Overall, BodyScan achieves
an average recognition accuracy of 72.3% across seven subjects.
This result is very promising considering the result is achieved
based on the user-independent model. At the same time, we ob-
serve that there is a significant difference between the highest (Sub-
ject 1) and the lowest (Subject 7) accuracies. This indicates that
subjects perform these five ADLs very differently and a personal-
ized model is needed for performance enhancement.

To provide a more detailed view of the result, Table 4 shows
the confusion matrix for the five ADLs across seven subjects. We
observe that walk achieves the best performance in terms of both
precision and recall while the other four ADLs have some confu-
sion between each other. This is because walk involves intense
upper and lower body movements while the other four ADLs only
involve hand movements.

G/P Brush Phone Shake Keyboard Walk
Brush 60.0% 7.1% 12.9% 20.0% 0.0%
Phone 14.3% 67.1% 7.1% 11.4% 0.0%
Shake 15.7% 8.6% 71.4% 4.3% 0.0%

Keyboard 20.0% 5.7% 7.1% 67.1% 0.0%
Walk 1.4% 0.0% 1.4% 1.4% 95.1%

Table 4: Confusion matrix of Most Common Activities of Daily Living.

Physical (P) & Transportation (T) & Hand-related (H) Activi-
ties: We then evaluate the performance of our activity recognition
scheme for recognizing physical (P), transportation (T) and hand-
related (H) activities. These include the aforementioned five most
common ADLs and another three activities including drive a car,
run and ride a bike. We collected a total of 112 mins of data of the
eight activities from seven subjects. The performance is evaluated
using leave-one-subject-out validation.

Table 5 shows the confusion matrix for the activities in the P, T,
and H categories across seven subjects. Overall, BodyScan achieves
an average recognition accuracy of 62.5% across seven subjects.
The performance drops compared to the previous ADLs experi-
ment. An important reason accounts for the performance drop is
the confusion between walk and run. As shown in the confusion
matrix, almost one third of the walk trials are misclassified into
run. This is because both activities involve intense movements of
arms and legs.

G/P Brush Phone Shake Keyboard Walk Car Run Bike
Brush 63.2% 0.0% 10.5% 15.8% 10.5% 0.0% 0.0% 0.0%
Phone 0.0% 47.4% 5.8% 10.5% 0.0% 15.8% 0.0% 10.5%
Shake 10.5% 5.3% 42.1% 5.3% 10.5% 0.0% 0.0% 26.3%

Keyboard 10.5% 10.5% 15.7% 52.6% 0.0 % 10.5% 0.0% 0.0%
Walk 0.0% 0.0% 0.0% 0.0% 68.4% 0.0% 31.6% 0.0%
Car 5.3% 0.0% 5.3% 0.0% 10.5% 73.7% 5.3% 0.0%
Run 0.0% 0.0% 0.0% 0.0% 21.1% 0.0% 78.9% 0.0%
Bike 5.3% 5.3% 10.5% 0.0% 0.0% 0.0% 5.3% 73.7%

Table 5: Confusion matrix of Physical (P) & Transportation (T) & Hand-
related Activities (H).

Free-Weight Exercises (E): Next, we evaluate the performance of
our activity recognition scheme for recognizing free-weight exer-
cises (E). We collected a total of 25 mins of data of five free-weight
exercises from one subject. The performance is evaluated using
leave-one-subject-out validation.

Table 6 shows the confusion matrix for the five free-weight ex-
ercises across seven subjects. As shown, BodyScan performs well
in classifying these five exercises. Overall, it achieves an average
recognition accuracy of 81.2% across these five activities. This
result indicates that BodyScan has the potential of becoming a per-
sonal exercise tracking platform that identifies and records free-
weight exercises.

G/P Bicep Raise Bent-over Tricep Chest
Bicep 87.0% 0.0% 2.9% 0.0% 10.2%
Raise 13.3% 78.3% 11.6% 10.7% 0.0%

Bent-over 0.0% 8.7% 84.1% 4.0% 2.9%
Tricep 0.0% 17.4% 6.7% 73.9% 0.0%
Chest 15.9% 0.0% 1.4% 0.0% 82.6%

Table 6: Confusion matrix of Free-Weight Exercises (E).

Isolated Body Part Movements (I): Finally, we evaluate the per-
formance of our activity recognition scheme for recognizing iso-
lated body part movements (I). We collected a total of 36 mins of
data from one subject. The performance is evaluated using leave-
one-subject-out validation.

Table7 shows the confusion matrix for the six isolated body part
movements. Overall, BodyScan achieves an average recognition
accuracy of 84.5%, indicating that BodyScan is capable of captur-
ing and differentiating the six considered isolated body movements.
When taking a closer look, we observe that curl right arm achieves
the highest recall and the lowest precision among all the six body
parts. In contrast, curl left arm achieves the lowest recall and the
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Figure 15: Impact of interference of nearby
people.

Figure 16: Impact of radio transmission rate. Figure 17: Vital sign sensing opportunity in the
field.

G/P CL CR SL SR SH BO
CL 64.3% 28.6% 7.1% 0.0% 0.0% 0.0%
CR 0.0% 100% 0.0% 0.0% 0.0% 0.0%
SL 0.0% 0.0% 78.6% 7.1% 0.0% 14.3%
SR 0.0% 14.3% 0.0% 85.7% 0.0% 0.0%
SH 0.0% 7.1% 0.0% 0.0% 92.7% 0.0%
BO 0.0% 0.0% 14.3% 0.0% 0.0% 85.7%

Table 7: Confusion matrix of Isolated Body Part Movements (I). CL: curl
left arm; CR: curl right arm; SL: swing left leg; SR: swing right leg; SH:
shake head; BO: bend over.

highest precision. Recalling that the ESP wristband is worn on
the left wrist and the HMB wearable unit is worn at the right hip,
our observation implies that the performance of the isolated body
movements are related to how close the body part is to the receiving
antennas. This is because if the body part is closer to the receiving
antennas, its intra-class variation can be more easily captured, re-
sulting in a wider activity class boundary.

6.1.5 Impact of Radio Frequency Interference
In this experiment, we examine the impact of radio frequency in-

terference (RFI) on the performance of activity recognition. Specif-
ically, we used the clean environment with an average RFI value of
3.2 p/s as the baseline. In addition, we introduced extra RFI to cre-
ate a noisy environment by setting up another radio transmission
link at the same wireless channel using a TP-Link AC750 router
and a laptop. Two RFI levels at 101.4 p/s and 214.3 p/s were cre-
ated for our experiment. For both RFI levels and the baseline, we
collected a total of 30 mins of data of five most common ADLs
from one subject. The performance of BodyScan is evaluated us-
ing leave-one-trial-out validation.

Figure 13 illustrates the performance comparison between the
clean and noisy environment. We observe that the activity recog-
nition performance in general is jeopardized with the existence of
RFI in the ambient environment. When taking a closer look, we
find that RFI affects activities differently. Specifically, RFI has a
more significant influence on the performance of activities that in-
volve low-intensity body movements (i.e., type on a phone, shake
hands, type on a keyboard) than those that involve high-intensity
body movements (i.e., walk, brush teeth). This is because radio
signals of activities with low-intensity body movements are more
easily overshadowed by RFI.

6.1.6 Impact of Interference from Nearby People
Besides RFI, we also examine the impact of interference caused

by nearby people on the performance of activity recognition. We
examine three scenarios where we have zero, one, and two peo-
ple staying within 1.2 to 2.1 meter range to the subject wearing
BodyScan. During the experiment, one subject performs a total
of 30 mins of data of five most common ADLs, while the peo-
ple nearby performing some common activities such as speaking,

typing on the keyboard, and walking around. The performance of
BodyScan is evaluated using leave-one-trial-out validation.

Figure 15 illustrates the performance comparison when zero, one,
and two people are nearby. As shown, the recognition accuracies
for different activities do not decrease in general when there are one
or two people moving nearby. This result indicates that BodyScan
is resilient to the interference caused by nearby people, validating
the design choice of our conical horn directional antennas.

6.1.7 Impact of Radio Signal Transmission Rate
Next, we examine the impact of radio signal transmission rate on

the performance of activity recognition. Specifically, we examine
five transmission rates including 100 Hz, 50 Hz, 25 Hz, 10 Hz and
6 Hz. For the five transmission rates, we collected a total of 70 mins
of data of the five most common ADLs from seven subjects. The
performance of BodyScan at each transmission rate is evaluated
using leave-one-subject-out validation.

Figure 16 illustrates the average recognition accuracies at all five
transmission rates. The average recognition accuracies across all
five activities and seven subjects are 72.3%, 64.1%, 61.3%, 54.6%
and 43.0% at transmission rate of 100 Hz, 50 Hz, 25 Hz, 10 Hz and
6 Hz, respectively. The figure shows a clear trend that as the radio
signal transmission rate decreases, the recognition accuracy drops.
This result indicates that with the higher resolution provided by
the higher transmission rate, our ECDF-based classification scheme
can capture the shape of the distribution of each activity class more
accurately. As such, the recognition performance is improved.

6.1.8 Impact of Antenna Configuration
Finally, we examine the impact of antenna configuration on the

performance of activity recognition. Specifically, we examine five
different antenna configurations: (1) dual upper-lower body direc-
tional antennas (UL) (our BodyScan design); (2) single upper body
directional antenna (SU); (3) single lower body directional antenna
(SL); (4) dual left-right body directional antennas (LR) (i.e., the
dual directional antennas pointing to the left and right side of the
human body); and (5) single omnidirectional antenna (SO). For five
antenna configurations, we collected a total of 45 mins of data of
the five most common ADLs from one subject. The performance
of BodyScan is evaluated using leave-one-trial-out validation.

Table 8 lists the performance of all five antenna configurations.
As shown, among all the five antenna configurations, UL achieves

Antenna Accuracy Comment
Configuration

UL 78.9% Both upper and lower body antennas are considered
SU 69.8% Only upper body antenna is considered
SL 56.0% Only lower body antenna is considered
LR 23.6% Dual antennas point to left & right side of the body
SO 50.3% One antenna worn at the same body location as UL

Table 8: Impact of antenna configuration.
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Processing Pipeline 100 Hz 50 Hz 25 Hz 10 Hz 6 Hz
CSI Extraction 0.702 0.596 0.354 0.278 0.134
Preprocessing 0.084 0.075 0.068 0.063 0.057
Motion Detection 0.083 0.064 0.046 0.035 0.028
Breathing Rate Estimation 0.182 0.167 0.146 0.138 0.122
Activity Classification 0.123 0.101 0.098 0.089 0.060
Sensor Fusion 0.001 0.001 0.001 0.001 0.001
Total (Breath Monitoring) 1.051 0.900 0.614 0.514 0.341
Total (Activity Recognition) 0.993 0.837 0.567 0.466 0.280

Table 9: Runtime performance of the radio signal processing pipeline at
each stage measured on the HMB wearable unit. The processing time is
measured in seconds.

the best performance. This result is important because it validates
the rationale behind the dual directional antenna design of BodyScan.
In comparison, LR achieves the worst performance, with an aver-
age accuracy of only 23.6%. This is expected because with the
dual directional antennas pointing toward the left and right side of
the body, movements of upper and lower body caused by human ac-
tivities can not be fully captured. We also observe that UL achieves
better performance than SU and SL. This indicates that the activ-
ity recognition performance is improved if information from upper
body and lower body movements are combined.

6.2 System Performance
6.2.1 Experimental Setup

We examine the system performance of our BodyScan prototype
in terms of runtime performance as well as power consumption
and battery lifetime. To perform the evaluation, we set up the ESP
wristband to continuously send radio signals and let the HMB wear-
able unit continuously receive radio signals. In addition, we imple-
ment the radio signal processing pipeline in the HMB wearable unit
and run the pipeline on its 1.2 GHz ARM Cortex-A9 processor.

6.2.2 Runtime Performance
To examine the runtime performance of our BodyScan proto-

type, we measure the average processing time consumed at each
stage of the radio signal processing pipeline at different CSI sam-
pling frequencies. Specifically, we examine the runtime perfor-
mance at the sampling frequency of 100 Hz, 50 Hz, 25 Hz, 10 Hz
and 6 Hz, respectively. At each sampling frequency, we run 20 tri-
als of a mix of different types of the targeted human activities from
different subjects, with each trial containing five seconds of CSI
data. We also run another 20 trials of breathing events from dif-
ferent subjects, with each trial containing 15 seconds of CSI data.
We report the average processing time over 20 trials at each stage
for human activity recognition and breath monitoring respectively
in Table 9. The table shows that among all the processing stages,
CSI extraction takes the most amount of time. It also shows that
the processing time increases as the sampling frequency increases
due to the increased number of CSI samples in each trial. More
importantly, the table shows that even at the sampling frequency
of 100 Hz, the total processing time for both activity recognition
and breath monitoring is around one second. This indicates that
with our lightweight radio signal processing pipeline design, our
BodyScan prototype can achieve real-time performance.

6.2.3 Power Consumption and Battery Lifetime
To examine the power consumption of our BodyScan prototype,

we use the Monsoon Power Monitor [8] to measure the power con-
sumption of both the ESP wristband and the HMB wearable unit
at the CSI sampling frequency of 100 Hz, 70 Hz, 50 Hz, 25 Hz,
12 Hz and 6 Hz, respectively. In order to save energy, we con-

(a) Power consumption of ESP. (b) Power consumption of HMB.

Figure 18: Power consumption at different sampling frequencies.

Device 100 Hz 70 Hz 50 Hz 25 Hz 10 Hz 6 Hz
ESP 16.0 17.5 17.7 18.0 18.6 19.0

HMB 15.0 15.3 15.7 16.4 17.4 17.4

Table 10: Estimated battery lifetime of ESP wristband and HMB wearable
unit under different sampling frequencies with the battery capacity of 700
mAh and 5000 mAh, respectively. The lifetime is measured in hours.

figure both ESP wristband and HMB wearable unit to be at 50%
duty cycle. At each sampling frequency, we measure the power
consumption for 15 mins and report the average value in Figure
18. We also estimate the battery lifetimes of both ESP wristband
and HMB wearable unit with the battery capacity of 700 mAh and
5000 mAh, respectively, assuming an ideal discharge curve of their
batteries. Table 10 shows the estimated battery lifetimes at each
sampling frequency. As shown, even at the sampling frequency
of 100 Hz, our BodyScan prototype has an estimated battery life-
time of 15 hours. As users would not wear BodyScan continuously
throughout the day (especially during sleep), the battery lifetime
of our BodyScan prototype is sufficient for a daily usage with one
single charge per day.

6.3 Deployment Study
6.3.1 Experimental Setup

Subjects: Four males out of the seven subjects we recruited volun-
teered to participate in the five-day deployment study.
Experimental Environment: The deployment study was conducted
in real-world settings at subjects’ homes and working places as well
as in outdoor environment. The real-world environment is by no
means clean from interference. Therefore, in our deployment study,
we take into consideration both RFI and the interference caused by
nearby people (i.e., people interference). In terms of RFI, we used
WireShark to measure the RFI at places where target activities of-
ten occur. These include bedroom and bathroom at home, meet-
ing room and corridor at working places as well as parking lot in
outdoor environment. In terms of people interference, since it is
impractical to accurately track the number of nearby people in the
field, we used low, medium and high to provide a rough estimation
of the level of people interference at different places.
Data and Ground Truth Collection: Throughout the five-day de-
ployment study, the subjects were requested to wear the ESP wrist-
band on the left wrist and the HMB wearable unit on the right hip
and were encouraged to perform the target activities as much as
they could. At the same time, they reserved the rights to take off
BodyScan at any time when they did not feel comfortable of being
monitored. To collect the ground truth, the subjects were asked to
label the activities as well as to record the timestamps and places
when the activities were performed. In total, 2499 mins of data
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Location RFI People Duration Activity Recognition
Interference Performance

Meeting room 1 6.3 p/s Medium 12m 54.1%
Meeting room 2 8.6 p/s Medium 14m 59.1%

Bedroom 14.0 p/s Low 10m 67.5%
Bathroom 8.3 p/s Low 2m 78.3%

Parking Lot 0.6 p/s Low 19m 52.3%
Corridor 7.5 p/s High 9m 74.1%

Street N/A Low 20m 60.4%

Table 11: Performance of activity recognition in the field (RFI of street is
not available due to impracticality).

was collected from all four subjects during five days. However, a
big portion of the collected data was either unlabeled or not belong-
ing to the target activity categories. As such, only 86 mins of data
was labeled.

6.3.2 Performance of Activity Recognition in the Field
Table 11 lists the activity recognition accuracies at different loca-

tions along with the corresponding average RFI values and people
interference levels. The overall accuracy across all the seven lo-
cations is 60.2%. Given the challenging conditions in real-world
settings, our result shows great promise of BodyScan as a practical
solution for tracking a variety of human activities in the field. On
the other hand, we also observe that the performance achieved in
deployment study is worse than that achieved in controlled settings.
One possible reason is that the orientation of the dual directional
antennas was changed during data collection. As such, the anten-
nas failed to capture the movements from both upper and lower
body. Another possible reason that accounts for the worse perfor-
mance is that more than one activity can be performed by the user
simultaneously in the uncontrolled settings. For example, the user
could type on the phone while walking. In such scenario, the col-
lected radio signals contain mixed information from both activities,
which is not covered by the activity model of BodyScan.

6.3.3 Vital Sign Sensing Opportunity in the Field
We are also interested in the feasibility of BodyScan for oppor-

tunistically sensing a user’s vital sign information in real-world set-
tings. Figure 17 shows the percentage of time in each day when
the subjects’ breathing rate information was captured by BodyScan
during the deployment study. As shown, the average percentage of
time over five days is 15.7%, 20.8%, 8.9% and 23.3% for each of
the four subjects. This result indicates that BodyScan is capable of
capturing breathing information for a reasonable amount of time in
the uncontrolled real-world environment. It also demonstrates the
great potential of BodyScan as a mobile health tool for monitoring
an individual’s breathing information in a non-intrusive manner.

6.3.4 Usability Study
Finally, at the end of the deployment study, we conduct a usabil-

ity study on all four subjects by asking them to fill in a survey. The
questions included in the survey are related to the comfortability,
privacy, and safety of wearing BodyScan in real-world settings. We
use the Likert Scale to code the answers of the subjects [33]. The
Likert Scale adopts a five-point scale with points of -2 (strongly dis-
agree), -1 (disagree), 0 (neutral), 1 (agree), and 2 (strongly agree).

Table 12 lists all the questions as well as the average and the
standard deviation of the points calculated from the answers of
all four subjects. In terms of comfortability, subjects in general
feel comfortable when wearing BodyScan although their opinions
vary significantly. In terms of privacy, subjects have a consensus
that privacy is an issue they concern about in general. However,
most subjects agree that they do not have a privacy concern about
BodyScan. Finally, in terms of safety, subjects in general do not

worry about the radio exposure from BodyScan. Taken together,
the results of the usability study show great potential of BodyScan
to be adopted by users.

Survey Questions Mean Standard Deviation
1. User feels comfortable wearing BodyScan 0.25 0.96
2. User concerns about privacy issues in general 1.00 0.82
3. Radio sensing is not privacy-intrusive 1.25 0.95
4. User does not worry about radio exposure 0.50 0.58
-2: Strongly Disagree, -1: Disagree, 0: Neutral, 1: Agree, 2: Strongly Agree

Table 12: List of survey questions and survey results.

7. DISCUSSION AND FUTURE WORK
The experience of design and evaluation of BodyScan provides

us with insights on both the promises and limitations of using radio
as a sensor on wearable devices for human activity and vital sign
monitoring. In this section, we elaborate on those insights in brief.
Impact on Mobile and Wearable Sensing Systems: BodyScan
represents one of the pioneer explorations of transforming radio
into an activity and vital sign sensor on wearable devices. In addi-
tion, one important element of the design of BodyScan is the cor-
respondence of the form factor and the on-body locations with the
smartphones and smartwatches/wristbands. With further research
and optimization on both hardware platform and signal processing
algorithms, we envision that the functionality of each component
of BodyScan could be integrated into future generations of smart-
phones and wearables in the form of smartwatches, wristbands, or
even eye glasses and cloth buttons. Given the prevalence of smart-
phones and the increasing popularity of wearables, as well as the
new capabilities provided by radio-based sensing, we hope that this
work could act as an enabler of inspiring new applications of smart-
phones and wearables in the areas such as mobile health, human-
computer interaction, and social computing.
Limitations on Activity Recognition: BodyScan has made key
strides in showing its feasibility in recognizing a rich and diverse
set of human activities. However, it does not deliver perfect activity
recognition performance mainly due to three limitations. First, it is
possible that more than one activity can be performed by the user
at the same time. In such case, the received radio signals contain
mixed information from multiple activities, which is not covered
by the activity model of BodyScan. Second, the activity recogni-
tion performance can be jeopardized if the dual directional anten-
nas do not point to upper and lower body respectively. Since the
wearable unit of our BodyScan prototype is still bulky, the orien-
tation of the wearable unit is prone to be changed during usage.
As such, the dual directional antennas may fail to capture the up-
per and lower body movements. We will work on miniaturizing
the wearable unit to decrease its vulnerability to orientation change
caused by its user. The third limitation is related to the tradeoff be-
tween computational complexity and real-time/power consumption
performance. The resources of the current version of our BodyScan
prototype are limited. To achieve real-time performance and to re-
duce power consumption, BodyScan sacrifices activity recognition
performance by adopting computationally lightweight signal pro-
cessing algorithms. We will work on improving the activity recog-
nition performance by developing a new prototype with onboard
dedicated low-power computational units (e.g., DSP) that can run
complex algorithms efficiently.
Limitations on Vital Sign Monitoring: BodyScan is not able to
provide accurate breathing rate estimation when the user is mov-
ing or performing activities that involve high-intensity body move-
ments. This is because the intense body movements overshadow
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the minute chest movements caused by inhaling and exhaling when
breathing. Another limitation in the direction of vital sign moni-
toring is that BodyScan could not provide accurate heartbeat rate
estimation even when the user is static or quasi-static (e.g., watch-
ing TV). This is due to the reason that movements caused by dias-
tole and systole of heart beating are even more subtle compared to
breathing. The signal-to-noise ratio (SNR) of the current version
of our BodyScan system is not high enough to extract meaningful
heartbeat information from the noise. We will work on improv-
ing the SNR of BodyScan from both hardware platform and sig-
nal processing algorithms perspectives with the objective to extract
heartbeat information in the next version of BodyScan.

8. RELATED WORK
Our work is closely related to two research areas: (1) wearable and
mobile sensing systems and (2) radio-based sensing systems.
Mobile and Wearable Sensing Systems: The past many years
have witnessed the surge of smartphones and wearable devices.
Powered by a variety of onboard sensors, these devices are capable
of continuously monitoring users’ behaviors as well as physiologi-
cal signals in an ambulatory manner. Accelerometer, GPS, micro-
phone and camera are the most popular sensors that have been ex-
tensively explored in the past. For example, accelerometer-based
systems have been developed for hand gesture recognition [32],
free weight exercise tracking [35], fall detection [28] and energy
expenditure estimation [48]. GPS-based systems have been devel-
oped for transportation mode recognition [22, 39], social network
identification [53] and personal environmental impact and exposure
estimation [36]. Microphone-based systems have been developed
for sleep quality monitoring [20], social interaction detection [26],
vital sign sensing [38, 42], as well as eating and drinking behavior
monitoring [27, 52, 23]. Finally, camera-based systems in the form
of eye glasses or wearables worn around the neck have been de-
veloped for eye gaze tracking [34], shopping behavior monitoring
[43] and lifelogging [45]. Different from all these existing sys-
tems, BodyScan explores using radio as a new sensing modality
on wearable devices. It complements the existing sensing modali-
ties of current wearable and mobile sensing systems by providing a
contactless and privacy-preserving scheme to continuously monitor
users’ behavioral and physiological information.
Radio-based Sensing Systems: BodyScan is also related to radio-
based sensing systems. Existing radio-based sensing systems can
be primarily classified into software-defined radio (SDR) based and
commercial off-the-shelf wireless device based systems. Pioneer
work in radio-based sensing systems used high-cost SDRs com-
bined with special hardware such as interference-nulling hardware
and ultra-wideband radar transceivers to track human activities and
vital signs. For example, WiSee uses Universal Software Radio
Peripheral (USRP) SDR to enable whole-home sensing and recog-
nition of human gestures [41]. WiTrack leverages Frequency Mod-
ulated Carrier Wave (FMCW) radar to track the 3D motion of a
user [13]. Vital-Radio also uses FMCW but is designed to track
the changes of radio signals caused by chest movements and skin
vibrations to monitor breathing and heart rates [14].

To lower the costs incurred from SDRs and special hardware,
systems based on commercial off-the-shelf wireless devices such
as Wi-Fi routers and laptop computers with Wi-Fi cards have been
developed. Many of these systems leveraged the fine-grained CSI
measurements extracted from the radio signals to recognize activ-
ities that involve intense full body movements as well as activi-
ties that involve minute movements. For example, E-eyes uses CSI
measurements to detect and recognize daily household activities

such as cooking and washing dishes [49]. WiFall leverages the
time variability of the CSI measurements to detect accidental falls
[19]. WiKey utilizes the unique patterns in the time-series of CSI
measurements embedded in the minute movements of fingers and
hands to recognize keystrokes [15].

BodyScan builds on the off-the-shelf wireless devices and the
CSI-based scheme. However, the fundamental difference between
the existing radio-based sensing systems and BodyScan is that ex-
isting systems use radio transmitters and receivers deployed in the
ambient environment to sense human activities and physiological
signals. In contrast, BodyScan utilizes radio transmitters and re-
ceivers in the form of wearables to achieve the same objective. In
our recent work, we have developed a radio-based wearable sens-
ing system called HeadScan, which uses a single pair of omnidirec-
tional antennas worn on the shoulder and the collar respectively to
capture head and mouth related activities including eating, drink-
ing, speaking, and coughing [16]. In comparison, BodyScan adopts
a different design by incorporating a pair of directional antennas
with one pointing upward to detect upper body movements and the
other pointing downward to detect lower body movements. Al-
though the use of multiple antennas is a common practice in appli-
cations such as wireless localization [25], it is the first time this ap-
proach has been used for wearable radio-based sensing. Moreover,
HeadScan employs a computationally expensive scheme based on
sparse representation to process radio signals. In contrast, BodyScan
utilizes lightweight schemes to realize on-device real-time radio
signal processing.

9. CONCLUSION
In this paper, we presented the design, implementation and evalu-
ation of BodyScan, a novel wearable system that uses radio alone
to enable whole-body continuous sensing for human activity track-
ing and vital sign monitoring. Our prototype design of BodyScan
comprises a pair of worn devices (wrist and hip placed); a design
that corresponds to an increasingly common scenario where a user
carries a smartphone while also wearing a wristband/smartwatch.
Under controlled conditions, we find BodyScan – from just these
two body positions – is able to recognize a wide range of activities
(e.g., walk, ride a bike, shake hands, free-weight exercises) with
promising accuracies and is able to estimate breathing rate with an
average accuracy of 97.4%. Experiments under more realistic con-
ditions show BodyScan can still achieve an average activity recog-
nition accuracy above 60% and capture breathing information a rea-
sonable amount of time each day. Through such results, BodyScan
demonstrates the feasibility of radio-based wearable sensing. This
is important because of the intrinsic benefits radio has over conven-
tional mobile sensor modalities including more privacy preserving
than a microphone or camera as well as requiring fewer body po-
sitions than an accelerometer for broad activity monitoring. For
these reasons, we expect radio-based sensing to play an important
role in the future evolution of wearable devices, and hope the de-
sign and techniques of BodyScan can act as a useful foundation for
the subsequent investigations.
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