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Abstract—Devices to support pervasive computing and the
Internet of Things (IoT) are becoming present in almost every
aspect of our lives. Due to their limited power and computa-
tion, these devices often need to rely on some more powerful
outsourced cloud services, which raises a security and privacy
concern as IoT data is often sensitive. On the other hand,
blockchain technology has recently gained much attention due
to its decentralized, trustless and immutable design. We propose
CapChain - an access control framework based on blockchain
that allows users to share and delegate their access rights
easily to IoT devices in public but still maintain privacy. To
protect privacy, we adapt multiple techniques from anonymous
crypto-currency blockchain systems to hide sensitive information,
including users’ identities and related information about the
capabilities. We also build a testbed as a proof of concept.

I. INTRODUCTION

Internet of Things (IoT) devices have become pervasive in

almost every aspect of our lives, from home automation, health

care to industries and transportation. Due to their limited

power and computation, these devices often need to rely on

some more powerful outsourced cloud services [1]. Users have

no choice but to entrust these third-party servers to process and

store their sensitive IoT data, which raises a security and pri-

vacy concern as a latent single point of failure can be present

if the servers are compromised [2]. Therefore, companies and

researchers have recently sought for an alternative solution

from blockchain, the core technology behind the famous

cryptocurrency system Bitcoin. A blockchain is a distributed

public ledger that records transactions of digital assets. It is

tamper-free thanks to the work of a consensus protocol and

mining process called proof-of-work that guarantees every

participant in the network behaves properly. Therefore, the

blockchain technology allows IoT applications to be built on

a decentralized, trustless network without the need of a central

authority [3].

In this paper, we focus on the access control problem in

IoT applications. With the growth of IoT devices, a user can

hold keys/credentials to several devices in different domains.

In most cases, the distribution of those keys is carried out

through a trusted server, which is either owned by the device

manufacturers or a third-party service, which can be a potential

central point of failure. On the other hand, it is also inconve-

nient for users to have a separate account to store their keys

for each application they are using. Therefore, it is desirable

to have a global framework that supports reliable and flexible

key sharing.
With blockchain, key exchange can be carried out via

transactions, thus is untampered and can avoid attacks such as

replay or man-in-the-middle [4]. Since data cannot be modified

or deleted once it is published, the blockchain can be treated

as a reliable access control list. However, public blockchains

also suffer from a privacy problem since all can access data on

the blockchains, which is not a favorable situation for access

control as the usage of devices should only be visible to users

within their private networks.
We propose CapChain - an access control framework based

on blockchain that allows users to share and delegate their

access rights easily to devices in public but still maintain

privacy. Our idea is to treat the access rights, which are

called capabilities in CapChain, as types of assets that can

be transfered between users via transactions. We assume that

every IoT device in CapChain has one or several ultimate

owners who have full control over the device and are able to

generate capabilities based on its own access control policies.

The capabilities then can be delegated to other users via

transactions on a public blockchain that serves as a public

immutable ledger that records the capability delegation. In

order to grant access to a certain user, the device needs

to verify the existence of the relevant transaction in the

blockchain. To protect privacy, we apply multiple techniques to

hide sensitive information that can only be visible to relevant

users. Our delegation system has the following characteristics:

• Each user’s capability has an expiry date for auto revo-

cation. As a rule of delegation, a receiver’s capability

cannot expire later than the expiry date of the sender’s

capability.

• Besides auto-expired capabilities, users can still track or

revoke the whole chain of delegation originated from

themselves if necessary.

• Identities of sender and receiver as well as transaction

information are protected.
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• Users need only one single master account to receive

capabilities from different domains.

With anonymous transactions, CapChain allows users to share

their home devices with other users as well as receive keys

of other places such as their offices through a global net-

work without worrying about their private information being

revealed to the public, thus enables scalability to multiple

domains and organizations.

II. RELATED WORK

We review related work on access control that are based on

blockchain in section A. Section B describes some projects

that attack the privacy problem in blockchain systems.

A. Access control in Blockchain

In terms of access control, Enigma [5] is a data management

platform based on both blockchain and off-chain storage.

It tackles common privacy issues with data ownership, data

transparency and auditability and fine grained access control.

To achieve privacy, only pointers to user data are stored

on the blockchain, while the data themselves are encrypted

before being randomly spread among a network of nodes and

managed by a distributed hash table.

IBM introduced a blockchain-based architecture called

ADEPT (Autonomous Decentralized Peer-to-Peer Telemetry)

[6], in which a dynamic democracy of objects connected to

a universal digital ledger, which provides users with secure

identification and authentication.

FairAccess [7] is a blockchain-based access control frame-

work that employs a similar idea to transfer access tokens

via transactions as our CapChain. However, in order for the

network to validate a token, FairAccess requires the access

control policy to be included in the token transaction. Since

the blockchain is visible to everyone, the policy can reveal

much information about the device and its users, i.e. the type

of the device and the type of access. In addition, since the

device itself is not capable to store the entire blockchain, it

must acquire the data from a trusted node, which means there

still needs some kind of centralized authority in the network.

Even in ADEPT, they also only expect the power and storage

capabilities of smart products to increase in the future to

meet the minimum requirement for blockchain functions [8]. It

means that at the moment, there has not been a practical way

for most of current resource-constrained devices to interact

directly with blockchain yet.

B. Privacy issues

A typical Bitcoin transaction has 2 components:

• Input: a reference to an output from a previous transac-

tion.

• Output: an output specifies the receiver and the amount

of money to be sent.

In order for a transaction to be accepted by the network, it

must satisfy the following: 1) the sender is the valid owner of

the inputs; 2) all inputs are referred to valid, unspent outputs;

3) all inputs must be consumed by the outputs, which means

Txn #786...
Txn #26c... Bob 3.0 BTC

Input

Txn #a50...

Output

Txn #23a...
Txn #8f9... Alice 1.0 BTC

Input Output

Txn #786...

Txn #23a...
Txn #8f9... Alice 1.0 BTC

Input Output

Txn #786...

Txn #5a4...
Txn #f32... Alice 2.0 BTC

Input

Txn #26c...

Output

Txn #5a4...
Txn #f32... Alice 2.0 BTC

Input

Txn #26c...

Output

X to Alice

Y to Alice

Alice to Bob

Fig. 1: Alice sends to Bob 3 Bitcoins, whose inputs refers to

two previous outputs.

the total currency value from the inputs and outputs must be

equal. Figure 1 depicts a sample transaction from Alice to Bob

with an amount of 3.0 Bitcoins, in which the input consists

of 2 previous outputs destined to Alice, a 1.0 Bitcoin and a

2.0 Bitcoin. Later if Bob wants to spend these 3 Bitcoins,

he can make a transaction that refers to his output in Alice’s

transaction. In fact, Alice and Bob do not use their names but

a pseudonym or so-called address that is derived from their

public keys to receive bitcoins. However, if someone happens

to know the user’s identity associated with an address, they

can link all transactions that are made from/to this user.

Recent cryptocurrency systems have been trying to protect

sensitive information that is published to public blockchains.

Chain [9] addresses 3 types of privacy concerns:

• Privacy of identity: the identities of sender and receiver

should not be revealed.

• Privacy of amount: the amount to be transferred should

not be revealed.

• Privacy of history: the inputs used in a transaction should

not be traced to the previous transactions that created

them as well as linked to future transactions.

For the privacy of amount, Maxwell et al. [10] developed

Confidential Transactions, a protocol based on Elliptic Curve

Cryptography for encrypting the input and output amounts

of a transaction in a way that still allows the network to

validate that the transaction balances. The protocol is adapted

to other cryptocurrency systems such as Chain and Monero.

Confidential Transactions is later extended to Confidential

Assets [11], which does not only blind the amount but also the

asset type, thus enables the transfer of multiple assets besides

a single crypto-currency.

There are several projects that take various approaches to

the anonymous currency, including CryptoNote [12] (and later

enhanced by Monero [13]) and Zerocash [14]. The idea behind

CryptoNote is a traceable ring signature [15], in which a

sender mixes his input with different inputs from others and

creates a ring signature that can prove that he knows the private

key to one of the public keys in the ring. Monero is developed

based on CryptoNote, but allows the amount of money to be
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hidden as well by combining the Confidential Transactions

with a ring signature called Multilayered Linkable Sponta-

neous Anonymous Group Signature (MLSAG) [13]. On the

other hand, Zerocash is based on zk-SNARK [16], an efficient

variant of a zero-knowledge proof of knowledge. Compared

to CryptoNote, Zerocash is completely anonymous while in

CryptoNote, the level of anonymity depends on the number

of parties in a ring. However, the zero-knowledge proof in

Zerocash is too computational expensive and is not suitable

for IoT environments.

III. SYSTEM OVERVIEW

A. Capability

We define a capability (denoted by CAP) as a token that

represents some access right to an IoT device, and is encrypted

by a secret key shared between the device and its owner. For

example, a user may have an “operate” capability to open/close

a smart lock. Capabilities can only be generated and published

to the blockchain by the device’s owner, then are transferred

between users via transactions.

In CapChain, the rule is transferred capabilities cannot have

longer life time than the original ones. Thus, the expiration

time can be treated similarly to the amount of money in

cryptocurrency systems. In other words, if we ignore the

context of capability, the fact that Alice, who holds a capability

that will expire in 5 days, can only delegate the same capability

that expires in no more than 5 days, is the same as Alice has

5 USD, and thus can only transfer 5 USD at maximum.

B. Blockchain and capability transactions

The blockchain stores all of capability transactions. It serves

as an access control list that records the proof that a user is

holding a certain capability and when it will be expired. There

are 3 types of transactions: txpublish, txdelegate, and txconfirm.

New capabilities are published to CapChain via txpublish
with an initial expiry date set by device owners. To delegate

capabilities, users need to post a txdelegate. Just like a Bitcoin

transaction, txdelegate also consists of input (aka the source

capability) and output (aka the destination). txpublish can be

considered as a special txdelegate but without the input. In

a txdelegate transaction, senders has to specify a new expiry

date of the delegated capability. As a rule of delegation, the

new date cannot be later than the old one from the input

capability. To prevent arbitrary delegations without actual

usage of capabilities, a txdelegate needs to be confirmed by the

device or an authority (e.g. the owner) before being used in

a further delegation. The confirmation is posted via txconfirm.

Figure 4 depicts a chain of delegation, starting from Alice who

is the owner of CAP1, then to Bob and Carol.

C. Authorization workflow

We address 3 entities in the network:

• IoT devices that have low computation and low storage.

Depending on the communication type, the device may

or may not have direct access to the Internet. In the latter

(1) Txpub(tx#1, CAP)
Alice

Bob

Carol
(4) Request access(tx#3)

(6) Response

CapChain

(5
) Q

ue
ry

(t
x#

3)

(5')Tx
conf (tx#3)

(1) Alice publishes a CAP via tx #1
(2) Alice delegates CAP to Bob via tx #2
(3) Bob delegates CAP to Carol via tx #3
(4) Carol sends a request to the device, refers to tx #3
(5) The device queries CapChain for tx #3
(5') If tx #3 is not confirmed, the device sends a txconfirm

(6) The device responds to Carol

Indirect interaction

Fig. 2: System overview

case, it has to rely on a local proxy to look for transactions

on the blockchain.

• Proxy: a more powerful device that acts as an actual node

on CapChain.

• Mobile devices such as smartphones or laptops that act

as wallets to receive and transfer capabilities.

To request for access, a user can prove his/her capability

possession by signing the corresponding transaction. The

device then will inquire to the blockchain (either directly or

via local proxy) for the presence of the transaction and the

capability and grant access accordingly.

D. Transaction linkability

Unlike the current anonymous crypto-currency systems

where there is no way for the sender to trace where their sent

money will be spent further, our users should be able to control

all of the delegations made by their successors and revoke

them if necessary. Therefore we utilize transaction depth -

the number of hops from the current transaction to the root

one made by the owner and design a simple hash chain so that

given the current transaction depth, users can easily find all of

the subsequent transactions. Generally, if a transaction is made

anonymously, it is impossible to infer the depth of it. However,

since we now attach the depth as a field in the transaction, it

should also be protected from the public network.

In summary, the following information should be obfus-

cated:

• The identities of the sender and receiver

• The identity of the capability

• The expiry date of the capability

• The transaction depth
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E. Monero’s Ring Confidential Transactions

1) ECC terminology:
• E: an elliptic curve in the form of y2 = x3 + ax+ b
• G: a generator (or base point) on E
• l: a prime order of the base point G
• H: a cryptographic hash function

• A pair (P, p) is a ECC public-private key pair if p ∈
[1, l − 1] and P is a point such that P = p×G.

2) Ring Confidential Transactions: As mentioned in section

II, Monero project tries to tackle all 3 problems of privacy at

the same time by introducing the Ring Confidential Trans-

actions (Ring CT) protocol, a combination of Confidential

Transactions protocol [10] and ring signature [15].

First, the privacy of amount requires that the amounts in

the inputs and outputs should be presented in some encrypted

forms while still allow the network to check the balance (i.e.∑
inputs =

∑
outputs). In other words, a homomorphic

encryption C is required to transform the amount values, such

that C(a)+C(b) = C(a+ b). In Ring CT, in order to hide an

amount a, a transaction includes a Pedersen commitment [17]

to a, which is computed as follows :

C(a, x) = xG+ aH

where x is a secret blinding factor chosen by the sender and

H is a point on E such that it is difficult to find the discrete

logarithm of H with respect to G (i.e. a value n such that

H = nG). For simplicity, suppose a transaction has 1 input

amount a and 2 output amounts a1, a2, the commitments to

those input and outputs are:

Cin = xG+ aH

Cout,1 = x1G+ a1H

Cout,2 = x2G+ a2H

where x − x1 − x2 = z. If the balance condition is satisfied,

i.e. a = a1 + a2 we will have

Cin −
∑

Cout,i = (x− x1 − x2)G = zG (1)

which is a commitment to 0 with secret key z and public key

zG. Thus, the sender can replace the raw values a, a1, a2 with

3 commitments Cin, Cout,1, Cout,2 and create a signature with

public key zG to prove the equality a = a1 + a2.

To hide the input Cin, the sender can form a ring of

n + 1 members by selecting n other inputs from the public

blockchain {Cin,1, . . . , Cin,n}. Since only he can know z, he

can generate a signature on that ring to prove his ownership

without revealing the actual input. The amount and blinding

factor are also encrypted and transfered to the recipient via

an ECDH key exchange. To prevent double spending, the

signature also includes a key image I = pHp(P ) where

Hp(P ) is a hash to point function, so that any attempt to

spend the input twice can be detected by the re-appearance of

I in the signature.

However, checking (1) is not safe enough to guarantee

that the transaction is valid since the equation still holds for

negative values due to overflow. For example, from an input

of 5 coins, two illegal outputs can be -3 and 8. In this case,

the validation is still successful as 5 = −3 + 8, but 8 coins

have been created out of nowhere. Confidential Transactions

prevent this by range proof - a proof that a committed value

must be within a valid range without disclosing the actual

value. The idea of the proof is also based on ring signature.

Readers can refer to the original papers [10], [12], [13] for

more details.

IV. SYSTEM DETAILS

A. Capability publication

At this phase the owner initializes all capabilities associ-

ated with his devices and sends them to the blockchain via

txpublish transaction. For scalability, an off-chain capability

storage similar to [5] can be used to store capabilities so that

the blockchain only needs to maintain a reference to each

capability. Besides the reference, a capability is also mapped

to a unique point M on an elliptic curve. This point will serve

as a capability ID that is used in all delegation transaction.

It is required that the discrete log with respect to two

capability points M1,M2 must be difficult to find. Otherwise

it would be possible to convert a capability to another. We

compute the capability point M as follows:

M = H(CAP, σ)G (2)

where σ is a shared secret between the owner and the device.

It is possible that a malicious user can flood the network

with fake capabilities or send those to other users. In such

cases, the publication can be restricted to only valid devices

by having manufacturers co-sign the transaction. ChainAnchor

[18] provides a mechanism for device commissioning that can

be applied to this scenario.

B. Transaction destinations

Our delegation involves 3 types of public keys:

• User’s primary address: each user joining the blockchain

has a public key as his/her primary address.

• One-time sub address: an address that is derived from

primary address in order to receive anonymous transac-

tions. A transaction is destined to 2 addresses: the user

and the domain the contains the device.

• Domain’s address: a public key V that represents a

domain/organization. The corresponding private key v is

known to both the local proxy and all devices within the

domain.

1) Deterministic user’s sub address: Since it is desirable

not to expose the recipient’s ID, the primary address should

not be used as the destination of the transaction. Unlike

CryptoNote or Monero that use a one-time unlinkable address

that makes sure only the recipient can spend the money, we

want to allow the delegators to link all of the delegation

originated from them. Therefore we derive the recipient’s sub

address in a deterministic way as follows.

We start with the root delegation from the owner Alice to

user Bob whose public key is B = bG:

60

Authorized licensed use limited to: Michigan State University. Downloaded on April 30,2021 at 20:06:44 UTC from IEEE Xplore.  Restrictions apply. 



Shared secret s with device
Random r

S = sG + rB
R = rG

{cap_info, s(2)}rB

{B}s (used at device)

Dest: PB = H(sB)G
Tag: PV = H(rV)G + M S’ = S – bR = S – rB

P’B = H(bS’)G
If (P’B = PB) decryptbR(cap_info)

Bob (B = bG)

S’ = S – bR = S – rB
P’B = H(bS’)G

If (P’B = PB) decryptbR(cap_info)

Bob (B = bG)

PV = H(vR)G + M
If (PV = P’V) collect(txn)

Proxy (V = vG)

PV = H(vR)G + M
If (PV = P’V) collect(txn)

Proxy (V = vG)

txn

Alice

Fig. 3: Alice computes addresses and attaches necessary

information to transaction txn. {X}y denotes X is encrypted

by key y, cap info is the capability information, including

CAP ID, expiry date, depth and blinding factors used in

commitments.

• Alice chooses a secret s, which is also shared with

her device, and computes the sub address PB for Bob

using Bob’s primary address B: PB = H(sB)G. She

also chooses another random secret r and computes

S = sG+ rB, R = rG.

• Alice encrypts all of the hidden values and blinding

factors used in commitments using one-time shared secret

with Bob rB = brG = bR and attaches the encrypted

information to the transaction, which is destined to PB .

• Bob scans every incoming transaction and computes S′ =
S− bR = S− rB, then P ′

B = H(bS′)G. The transaction

is destined to Bob if P ′
B equals to PB .

• Since PB is a one-time address, Alice encrypts Bob’s

primary address B using the secret s so that her device

can use B for further verification.

Figure 3 demonstrates Alice’s computation of addresses and

how Bob recognizes his transactions.

If Alice wants to allow Bob to delegate the capability

further, she will also encrypt a value s(2) = H(s) and attach

it to the transaction. Now Bob can derive a sub address for

Carol as PC = H(s(2)C)G.

In general, a user with public primary address X who

receives a capability at depth d will have the following sub

address:

PX = H(s(d)X)G (3)

By computing recipient’s addresses using hash chain as

above, Alice is not only able to revoke Bob’s capability but

also Carol and any further user. It is straightforward to revoke

Bob’s by announcing his sub address PB . In order to find

Bob’s transaction destined to Carol, recall that Bob has to

provide his corresponding key image IB = pBHp(PB) in

his ring signature. As the private key pB is also known to

Alice, she can easily compute IB and look for the transaction

that contains this key image and find Carol’s sub address PC .

Knowing Carol is at depth 2, Alice can decrypt her primary

address C and compute the private sub key pC , thus the

revocation can be continued. Figure 4 demonstrates a chain

of delegation transactions starting from the owner Alice. It

is crucial that Alice’s revocation only works if Bob creates

Carol’s sub address properly using the correct depth and

primary address. Although the confirmation process prevents

Bob from lying about Carol’s primary address, he can use a

false depth. For example, instead of using s(2), Bob can raise it

by 1 to s(3) and use it for Carol. Carol then tells the device that

she is at depth 3 and since the address is still generated from

the same seed, the authentication is successful though Alice

can no longer trace back Carol unless she checks for every s(i).
Therefore to force Bob to use the appropriate depth, the depth

value should be attached to the transaction as a commitment

so that Bob cannot change it to other values. We present how

to create such commitment in section C.

2) Domain’s sub address: As shown in figure 3, Alice also

tags the domain to her transaction by computing the domain’s

sub address

PV = H(rV )G+M1 (4)

The purpose of the domain’s address is two-fold. First,

similar to Bob, the local proxy can recompute the sub address

P ′
V = H(vR)G + M = PV so that it may store only

transactions destined to its domain. Second, the tag also serves

for revocation/confirmation purposes. As stated in section

III-B, a txdelegate cannot be used for further delegation without

a txconfirm. Since the private key of M is known to the

device, it also knows the private key pV , hence can sign the

transaction as an anonymous confirmation. The confirmation

can be relayed by the local proxy, but the proxy is unable to

sign the transaction by itself as it does not know the private

key of M, therefore compromise can be mitigated.

C. Delegation with commitments

1) Capability commitment:
a) Capability ID obfuscation and depth commitment:

Suppose Alice is at depth d − 1 of a delegation chain and is

holding a capability CAP with ID point M and expiry time

t. To make a delegation to Bob, first she needs to obfuscate

her capability ID. We leverage Confidential Assets [11] by

publishing an obfuscated ID Mcap as below

Mcap =M+mG (5)

where m is a blinding factor. After M is obfuscated, an

input commitment to the depth d− 1 will be:

Min = (d− 1)Mcap +m1G (6)

As the next depth must be d, the output commitment is

Mout = dMcap +m2G (7)

1In practice M should be hidden so the proxy may not know which
capability point to use. Therefore the tag instead uses a public obfuscated
version of M, which is presented in section C. In either case, only the device
or the owner can compute the private key.
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Input

N/A

CAP ID: M
Exp: 20181231

Depth: 0
Dest: H(sA)G

Tag: H(rAV)G + M
Txn A (txpublish)

Output

N/A

CAP ID: M
Exp: 20181231

Depth: 0
Dest: H(sA)G

Tag: H(rAV)G + M
Txn A (txpublish)

Output

Txn A

CAP ID: M
Exp: 20181130

Depth: 1
Dest: H(s(2)B)G

Tag: H(rBV)G + M
Txn B (txdelegate)

Output

Txn B

CAP ID: M
Exp: 20181031

Depth: 2
Dest: H(s(3)A)G

Tag: H(rCV)G + M
Txn C (txdelegate)

OutputInput Input

Fig. 4: An example of a delegation chain from Alice to Bob, then to Carol. Bolds are hidden information.

Since both M and d are hidden, it is necessary to build

a ring signature that can prove that 1) Mcap is committed

to M and 2) Mout and Min are committed to d and d − 1,

respectively. We create a single ring signature that can prove

both statements at the same time as follows. From equation

(3) - (5) we have

Mout −Min −Mcap = (m2 −m1)G (8)

Mout −Min −M = (m2 −m1 −m)G (9)

Hence

2(Mout −Min)−Mcap −M = [2(m2 −m1)−m]G = μG
(10)

As the left-hand side is a public key that only Alice can

sign for with secret key μ = 2(m2 − m1) − m, to prove

that the commitments are committed to M and d, Alice can

pick a number of inputs Min,1, ...,Min,n and capability ID

candidates M1, ...,Mn and create a ring signature on :

{2(Mout −Min,1)−M1 −Mcap,

...,

2(Mout −Min,n)−Mn −Mcap,

2(Mout −Min)−M−Mcap}

b) Proof: we show that (10) is sufficient to guarantee that

a malicious user cannot create illegal Mcap and depth. Suppose

that Mike chooses x, y �= 1 and computes the commitments

as follows

M′ = xM+mG

Min = dM′ +m1G

Mout = (d+ y)M′ +m2G

Hence

2(Mout −Min)−M′ −M = (2xy − x− 1)M+ μG
(11)

In order for Mike to sign with μ, M must be canceled out,

implying 2xy − x − 1 = 0. It is clear that x = y = 1 is the

only solution, which means that Mike cannot cheat and create

illegal commitments.

c) Capability commitment: After having the obfuscated

Mcap for CAP, an input commitment to the capability with

expiry time t is

Cin = xG+ tMcap

where x is another random scalar. Now to delegate CAP with

a new expiry time t1, two output commitments can be created

as follows:

Cout = x1G+ t1Mcap (12)

Cout = x2G+ (t− t1)Mcap (13)

By the ring signature on Cin − (Cout + Cout) and range

proofs on t1 and t − t1, the network can verify that the new

expiry time t1 must not be later than the original one t.

The reason Mcap is used instead of M is it serves both as

a blinded version of M and a public point similar to the point

H in equation (1) so that the network can use to verify the ring

signatures and range proofs. It should be noted that here Cout

is the only valid delegated capability, the complement Cout is

just a dump output that serves for the verification purpose.

Unlike money that cannot be double spent, capabilities can

be transferred multiple times to different users. However as

ring signature is linkable by the key image, it is possible to

detect a repeated transfer of a capability. To avoid that, besides

a normal capability output, a delegation can also include an

echo output that sends back the capability to the sender but

under a new address and invalidates the old one. The new echo

address is generated in exactly the same way with the normal

recipient’s address, for example, Alice’s echo address will be

PA = H(s(d)A)G

D. Access request at device

In the first use of the capability received from Alice, Bob

presents the transaction to the device and signs it with his

primary keypair (B, b). The device then verifies the signature,

decrypts the primary address B and checks if the sub address

PB is generated from the correct seed s. If everything is

correct, it sends a txconfirm to CapChain by signing with the

domain’s sub address PV . After the transaction is confirmed,

Bob can use his sub address instead of his primary one for

the signature and the device no longer needs to check the

generation of the sub address. To prove the ownership of the

capability received from Alice, Bob needs to:

1) Prove that his capability ID and expiration time are valid

as these values are hidden from the transaction.
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2) Prove that he is the recipient of the transaction.

Algorithm 1 Request verification at device

1: procedure VERIFY(txid)

2: Verify commitment of capability

3: if !is confirmed(txid) then
4: Verify commitment of depth d
5: Verify user’s sub address PX = H(s(d)X)G
6: Post txconfirm
7: end if
8: Decrypt user’s primary address using s(d)

9: Verify user’s signature by primary address

10: end procedure

To prove the capability information, from Eq. (5) and (12) we

have

C = Cout − t1M = (x1 + t1m)G (14)

which is a public key with c = x1 + t1m as private key. Thus

Bob can provide a signature with (C, c) as the public-private

key pair. The device then can perform the same calculation as

(14) to obtain the public key C and verify the signature.

To prove the identity, Bob needs to show that his sub address

is generated by the correct depth d. Similar to the capability

information, he also knows the private key of the public

key Mout − dM, hence can provide another signature. After

verifying the depth, the device can decrypt Bob’s primary

address and check if Bob’s sub address PB = H(s(d)B)G.

It is noticeable that any insider having the same capability but

at a smaller depth than Bob can deduce his sub address as well

as the private key. Therefore although this does not affect the

delegation process as nobody except Bob can produce the ring

signatures without the knowledge of the commitment blinding

factors, Bob should use his primary address instead of the sub

address as the proof of his identity.

Since the purpose of sub address is to facilitate the revo-

cation process and the user’s identity is proved using primary

address instead, we only have the device check the generation

of sub address at the first time a transaction is presented to re-

duce the computation overhead. The procedure is summarized

in Algorithm 1.

V. EXPERIMENTS AND DISCUSSION

Our testbed includes an Arduino MKR1000 with a 32-bit

ARM Cortex-M0+ MCU with 32 KB of SRAM and 256 KB

of flash and a Raspberry Pi Zero W with a 1 GHz single-core

CPU and 512 MB RAM. Both the Arduino and the Pi simulate

smart devices, but the Pi is also a CapChain node that acts as

a local proxy for the less powerful Arduino.

A. Blockchain performance

We build CapChain based on Monero’s source codes. A test

network is deployed on our MSU HPCC, which consists of

20 mining nodes and 20 wallet nodes that send transactions

every 5 seconds. The Pi is a regular node that communicates

with HPCC network through SSH tunneling. For convenience,

we leverage the mining process to publish 4000 capabilities

before starting the transfer. With the current Monero’s imple-

mentation of proof of work, a new block is generated every 3

minutes on average, which means users should wait for at least

3 minutes before receiving a capability. For reliability, users

may wait for more new blocks to make sure their transactions

are on the main chain. However, such latency only occurs

at the delegation phase as once the capability is received, it

can be used at the IoT device without any more transaction

involved, except txconfirm sent by the device to confirm that it

has seen the capability.
Compared to the current size of a basic Monero transaction

which is 13 KB, our transaction takes up to 30 KB due to

additional signatures and range proofs. However, since an

access right is often valid for a period of time, a delegation

would happen less frequently than a money transaction, hence

the growth of the blockchain should also be much slower. A

Raspberry Pi with 1 GB spare storage (excluding the OS) can

store more than 30000 delegations, which is scalable to larger

organizations beyond that of home environments.

1 5

1. User sends a request (capability ID, transaction ID)
2. Device queries home proxy for the corresponding transaction
3. Proxy response (transaction is valid or not)
4. Device verifies signature
5. Device responses to user

4

Fig. 5: Testbed with a low-power Arduino as smart device and

a trusted daemon running on blockchain

B. Performance at IoT devices
On the Arduino we used the ArduinoLibs 2, which supports

Curve25519 [19] that is used in Monero/CryptoNote signature

scheme. The performance is shown in Table I.
We found that the point multiplication operation contributes

the most to the computation time. Since both the generation

of sub address and signature verification requires 2 multipli-

cations, they have similar speed. The verification of capability

commitment takes the longest time due to 1 additional mul-

tiplication as in equation (14). Although the verification of

depth should have a similar processing time, we found that

with small values like depth which is often less than 10, doing

a loop of point additions is much faster than multiplication,

hence the actual processing time is reduced.
Although the signature verification is quite slow, we be-

lieve the performance can be improved with a slightly more

2https://rweather.github.io/arduinolibs/crypto.html
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TABLE I: Processing time of request

Action #multiplications
Processing time on
Arduino MKR

Estimated time on
Arduino Due

(1) Verifying sub address 2 1436 ms 315 ms
(2) Verifying depth commitment 3 1656 ms 363 ms
(3) Verifying user’s signature 2 1394 ms 306 ms
(4) Verifying capability commitment 3 2125 ms 466 ms
(5) Other computations (parsing messages, 111 ms 24 ms
decoding, etc.) and communication

Total round trip time at first use with confirmation 6777 ms 1616 ms
Total round trip time without confirmation (3)+(4)+(5) 3685 ms 796 ms

powerful hardware. According to ArduinoLibs benchmark, an

Ed25519 signature verification [20] takes 306 ms on Arduino

Due with ARM Cortex-M3 MCU, which is about 4.5 times

faster than the Arduino MKR. Like CryptoNote, the verifica-

tion of Ed25519 signature also takes 2 point multiplications,

thus it should take a similar amount of time for the CryptoNote

scheme to perform on the same hardware. Based on the

reported benchmark from ArduinoLibs, we calculate a rough

estimation of processing time on Arduino Due, assuming it

is proportional to the processing time on the Arduino MKR.

It is shown in table I that the total processing time without

confirmation stage could be less than a second.

C. Consensus and incentives

Though our current implementation adapts proof of work

from Monero, it can totally be replaced with an alternative

consensus protocol such as [21], [22] that is less computational

expensive and have lower latency. Consensus protocols that

are suitable for IoT environments is one of the topics that we

would like to explore in future works.

Most of current consensus protocols rely on a certain eco-

nomic benefit that incentivizes users to participate and behave

honestly. Since our objective is not to build a cryptocurrency,

a bounty mechanism like [23] in which IoT data is provided as

a reward can be an incentive. For example, device owners can

publish a special capability for data acquisition and attach it to

their transactions as a reward to miners. However, we do not

eliminate the possibility of economic incentive as payments

are usually required in many scenarios, for example, house

and car rentals, parking services, etc.

VI. CONCLUSION

We present CapChain - an access control framework

for sharing and delegation based on blockchain technology.

CapChain is not only reliable thanks to the blockchain ar-

chitecture but also preserves user privacy by hiding sensitive

information about the access delegation from the public. Our

experiments show the applicability and scalability of CapChain

in IoT environments.
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