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Abstract—Accurate indoor location information remains a
challenge without incorporating extensive fingerprinting ap-
proaches or sophisticated infrastructures within buildings. Nev-
ertheless, modern smartphones are equipped with sensors and
radios that can detect movement and can be used to predict loca-
tion. Dead reckoning applications on a smartphone may attempt
to track a person’s movement or locate a person within an indoor
environment. Nevertheless, smartphone positioning applications
continue to be inaccurate. We propose a new approach, CRISP -
CoopeRating to Improve Smartphone Positioning, which assumes
that dead reckoning approaches have inaccuracies, but leverages
opportunities of the interaction of multiple smartphones. Each
smartphone computes its own position, and then shares it with
other nearby smartphones. The signal strengths of multiple radios
that are used on smartphones estimate distances between the
devices. While individual smartphones may provide some posi-
tioning (possibly inaccurate) information, accuracy may improve
when several smartphones cooperate and share position informa-
tion through multiple iterations. Via indoor experimentation and
simulation, we evaluate our approach and believe it is promising
as an inexpensive means to improve position information and
possibly lead to better results for a number of applications,
including exercise profiling.

I. INTRODUCTION
Accurate indoor position and movement information of

devices enables numerous opportunities for location based
services [1] and emerging personalized exercise monitoring
applications. Services such as guiding users through buildings,
highlighting nearby services within shopping malls, or tracking
the number of steps taken or climbed by a user in order to
profile daily exercise are some of the opportunities available
when accurate positioning information is computed by devices.
GPS [2] provides accurate localization results in an outdoor
environment, such as navigation information for vehicles.
Presently, accurate indoor location information remains a
challenge without the incorporation of expensive devices
or sophisticated infrastructures within buildings. Traditional
indoor localization approaches can be categorized into two
types: 1) users required to carry special devices or deploying
some infrastructures (specialized access points, antenna arrays,
acoustic beacons) to assist the localization [3]–[7]. The costs
of such systems are expensive and the users have to be bonded
with extra devices 2) for device free localization approaches
[8]–[11] user do not carry extra devices, but fingerprints (or
other machine learning) algorithms are often needed to train
the off-line signal strength for certain environments or via
crowdsourcing to achieve ideal accuracy. Data collection and
training are exhaustive and time consuming.

Modern smartphones or tablets are equipped with sen-
sors, such as accelerometer, gyroscope, rotation vector, and
orientation sensors, and multiple types of radios, which can
detect movement and can be used to predict location. Dead
reckoning [13] can calculate a person’s current positions by
using a previously determined position. The parameters that
dead reckoning needs are obtained by the accelerometer and
orientation sensors on the smartphones. The performance of
dead reckoning relies on the measurement accuracy of these
sensors. In fact, the accumulative errors caused by the inertial
sensors are difficult to avoid. As a common sensor used for
localization, UM6 [21], small errors of the orientation estimate
causes serious deviation of the computed location. With only
0.5 degree error of the orientation sensor, an error of 308 meters
can occur within a minute.

Furthermore, new devices are introduced regularly for health
monitoring and exercise profiling, which include detecting
the movement of people for the purposes of counting the
number of steps a person takes on a daily basis. It is said
that walking 10,000 steps a day is important exercise that
the human body needs to stay fit. Therefore, by building a
pedometer using the accelerometer on the smartphones, the
application on smartphones can provide health and medical
information to users, such as number of steps and burning
calories [14]–[17]. These pedometers count users’ steps by
using their own algorithms. However, since the data obtained
from accelerometers are not accurate and the algorithms are
not perfect, the accuracy of such pedometers is not ideal.
Smartphones may be paired with such pedometers, or may
use their internal sensors.

We propose a new approach, CRISP - CoopeRating to
Improve Smartphone Positioning, which assumes that dead
reckoning approaches have inaccuracies, but leverages oppor-
tunities of the interaction of multiple smartphones to improve
accuracy. Each smartphone computes its own position, and
then shares it with nearby smartphones. Furthermore, the
signal strengths of multiple radios are used on smartphones
to estimate distances between the devices. The idea is that
while individual smartphones may provide some positioning
(possibly inaccurate) information, opportunities of accuracy
improvement occur when several smartphones cooperate and
share position information. Accuracy may improve as multiple
iterations of information sharing and computations are made.
Via indoor experimentation and simulation, we evaluate our
approach and believe it is promising as an inexpensive means
to improve position information and possibly lead to better
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Fig. 1: Framework of CRISP.

results for exercise profiling.
Key Contributions
1) While many researchers have used RSSI as a means

to measure distances between positions [7], [8], [10],
[11], to the best of our knowledge, CRISP is the
first of its kind to interact with other scanned mobile
devices held by other users in order to improve a
user’s own localization accuracy.

2) We design and evaluate an approach to improve the
accuracy of a pedometer application on a smartphone
by RSSI measurement rather than only judging ac-
celerometer data.

3) We combine the RSSI from Zigbee and Bluetooth
detected on mobile devices, and design a WiFi filter
to reduce the noise.

The rest of the paper is organized as follows: Section II
presents the system design. Experiments and simulations are
shown in section III and further discussions are provided in
section IV. Related work is given in section V. Section VI
provides the conclusions and a discussion of future work.

II. SYSTEM DESIGN
A. System Overview

Before introducing details about our design, we provide
a short overview of the components used in design. Figure 1
shows the overall architecture.

Our system has two mechanisms on a user’s mobile device:
1) periodically measures the accelerometer on user’s mobile
device, by simulating user’s walking mode as a formula, we
compute the user’s position by dead reckoning, and 2) when
a user encounters other users, CRISP periodically broadcasts
Bluetooth, Zigbee and WiFi signals to the other users’ devices
that are nearby. By receiving the RSSI values from other
detected devices, a mobile analyzes the variation of the RSSI in
each period. Since the WiFi signal is sensitive to interference,
if the variation of the WiFi RSSI is beyond a threshold, we
assert that the RSSI values received in this period are invalid
because of interference and recompute using historical data.

A practical challenge is that how to use RSSI values to
help a user locate himself accurately without any extra devices.
In our system, after obtaining RSSI from detected devices, the
user uses the mapping relation between RSSI and the Euclidean
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Fig. 2: Dead reckoning approach.

Distance to estimate the distance between these devices. These
relations of different mobile devices are trained off-line and
can be accessed on the cloud. After obtaining the distance
between each pair of devices, all devices in the detected range
can form a triangle or polygon. The initial position of each
vertex is generated by dead reckoning. The user computes its
own position by using the distances to other devices and other
devices’ locations. By iteration, the errors of estimated positions
decrease effectively. A mechanism of choosing the estimated
positions between dead reckoning and geometry computation
is executed in each period. CRISP also designs a model for
counting the user’s walking steps. This model can reduce the
errors caused by common pedometers on the smartphones.

B. Dead Reckoning Approach
We develop a dead reckoning approach first. An accelerom-

eter is an inertial sensor that is suitable for a user’s activity
recognition. Mobile devices sense the acceleration on three
axes orthogonal to one another periodically. We set the time
length of each period to be 1 second. The formula to compute
acceleration is in equation (1). The symbol g refers to the
earth gravity, ax, ay and az refer to the acceleration received
on the Ox, Oy and Oz. By the obtained acceleration in each
period, the movement distance of a mobile device in time period
n is based on the equation (1). vn−1 and an−1 refer to the
velocity and acceleration from previous time period, tn refers
to the time length of current period. Sn refers to the vector of
movement distance in current period. As shown in Figure 2, if
the application on smartphone computes movement distance
in each segment by (1) continuously, it can obtain the whole
trace of mobile device. However, the accelerometer on a mobile
device records the acceleration of the mobile device rather than
a human’s body. Therefore, if a person’s body movement is
different from a mobile device’s movement, dead reckoning
will cause serious distance deviation.

~a = (ax, ay, az − g), ~Sn − ~Sn−1 =
1

2
~an−1t

2
n + ~vn−1tn

(1)

C. Distance and RSSI
Received Signal Strength Indicator (RSSI) is a common

measurement of the power present in a received radio signal,
with "dBm" as the unit of RSSI. RSSI is easy to collect on most
mobile devices. Although the RSSI values often vary due to
interference and path loss, RSSI values obtained from the other
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devices are highly related to the distance between the devices.
Shorter distances often represents stronger RSSI. In CRISP,
we build the RSSI-distance mapping relation by collecting the
data that represents the distances and RSSI values for different
types of popular mobile devices.

In our preparation phase, we evaluate the RSSI-distance
mapping relation for the Samsung Galaxy S5 smartphone,
Samsung Tablet 4, and Google Nexus 5 tablet. The RSSI
is obtained from the Bluetooth Adapter. For example, if the
distance between Samsung S5 smartphone and Samsung Tablet
4 is 5 meters in an empty room, the RSSI is -66 dBm. The
training relation does not consider interference and other factor
fading the RSSI values. These noises and exceptions will be
handled by the WiFi filter. These mapping relations are stored
in the database on a cloud server. In addition, even if training
the mapping relation may bring labor and time costs, since the
types of mobile devices in our work are popular, the obtained
relations can serve common Android based mobile devices.

D. Triangular Calculation Localization
1) Triangular Calculation Model: In CRISP, the goal of

triangular calculation is to locate a user’s position by knowing
other detective devices’ locations and RSSI values. To illustrate
this idea, we provide an example: as shown in Figure 3, three
users (Alice, Bob, and Carson) hold mobile devices that have
Bluetooth adapters. In each time period, we assume they form
a triangle. After turning on the Bluetooth option, each receives
Bluetooth RSSI values from the other two users. Then, we
can obtain the length of the three sides of the triangle by the
distance-RSSI mapping relation. If Alice hopes to locate herself
and she knows positions of Carson and Bob (Bob and Carson’s
positions are computed by the dead reckoning approach and
sent to Alice when they encounter), Alice can compute her
position by the equations (2), (xa, ya) denotes the the device
a’s position on a two dimension plane. AB and AC denotes
the distances between Alice and Bob, Alice and Carson. This
example explains how the triangulation calculation model helps
one user to locate his/her position. In our design, because the
range of Bluetooth detection is 10 meters, the upper bound of
each slide in a triangle is 10 meters.

Mapping(RSSIAB) = |AB| =
√
(xa − xb)

2
+ (ya − yb)

2

Mapping(RSSIAC) = |AC| =
√
(xa − xc)

2
+ (ya − yc)

2

(2)

Since the dead reckoning approach is not enough to provide
satisfactory location information, another case is proposed
in Figure 4. There are three users (Alice, Bob, and Carson)
carrying smartphones. The vertices on triangle ABC refer to
the real positions of the three users. We assume the three users
evaluate their initial locations by the dead reckoning apps,
which are not accurate. The estimated positions are A’, B’,
and C’. The distances between A and A’, B and B’, and C
and C’ are two meters. By using the triangular calculation,
Alice obtains RSSI values from Bob and Carson, and by the
RSSI-distance mapping relation, Alice evaluates the estimated
distance from Bob and Carson.

Then, by the two computed distances (AB’ and AC’) and
the distances between B’ and C’ (B’C’), we can compute the
position A"- which is the estimated position of A computed by
the equations as (1). A is closer to A” rather than A’. We can
also compute the position B” and C”. Thus, the new formed
triangle A”B”C” is able to reduce the distance errors caused
by dead reckoning.

We apply the triangle calculation to a dynamic scenario.
The preliminary observation is: user Alice carries the mobile
device and enters an empty room; Bob and Carson are already
in the room. The three people walk freely. In the beginning,
we assume they do not have any initial error of distance. Then,
we record the Alice’s distance error, which is caused by dead
reckoning in the next 14 seconds.

As illustrated in Figure 6 and Figure 7, since there are
inaccurate values obtained from accelerometer, the distance
errors due to dead reckoning increase rapidly. However, the
localization errors of the triangle approach stay at a low
level because the triangle calculation errors are caused by
the differences between estimated mapping distances and the
real distances.

The above analysis is from the perspective of Alice. We
turn focus to all three devices in the triangle. We also execute
the experiment as above. The only change is that we set each
user to an initial deviation from their real starting position (the
deviation is 2 meters). The initial deviations of their locations
are caused by the dead reckoning application on the smartphone.
Then, we use the triangle calculation to compute the users’
locations. As Figure 8, after running the triangle computation
for 600 seconds, the distance errors of A, B and C are all
reduced effectively. To validate this conclusion, we repeat the
same experiment 3 times. Then, we simulate the experiments
47 times. As the Figure 9 shows, the data samples on the two
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dimensional plane refer to the average values of distance errors
of the 50 experiments (or simulations) at different time points.
The shadow areas refer to the confidence interval for each data
point. In this paper, confidence intervals are typically stated at
the 95 percentage confidence level. Although it is a preliminary
observation, by adopting triangle computation, with the time
increasing, errors of distance can be reduced within 1 meter,
which is reasonable and acceptable for many indoor positioning
applications.

2) Extension from Triangle to Polygon: Based on the above
example that includes three users, Alice can obtain her position
by triangle computation. In a real scenario, there might be more
than three devices in a room or in a hallway. As the above
example, if David enters the room, we can form a quadrilateral.
User devices can be treated as the vertices of a quadrilateral.
Then, three are three triangles in the quadrilateral including
the node Alice, namely, triangles ABC, ABD, ACD as shown
in Figure 5. The new location of Alice is defined as the mean
value of estimated Alice’s locations from the three triangles:
xa= (xa(abc) + xa(abd) + xa(acd))/3, ya=(ya(abc) + ya(abd) +
ya(acd))/3, where xa(abc), ya(abc) are the Alice’s (a’s) x and
y values computed from triangle ABC. If the room contains
more than 4 devices, all the devices can be abstracted as the
vertices of a polygon. For each of the devices, we can use
the triangles that are in the polygon to help localize itself.
Then, by computing the mean value of the position obtained
from different triangles, the user of a device can compute its
position. If one user encounters more mobile devices and forms
more complex polygons, the localization results may be more
accurate.

E. Combine Different Types of Signals: Bluetooth, Zigbee, WiFi
1) The Features of Three Types of Signals: Most smart-

phones and tablets support applications of Bluetooth and
WiFi. Bluetooth RSSI is not only sensitive to interference
but also sensitive to the distance between two detective devices.
Bluetooth RSSI values often vary from maximum to minimum
within its 10 meters’ range. Shorter distance reflects stronger
signal strength. WiFi RSSI values are sensitive to interference
such as the human body or wall between the sender and receiver,
but for most wireless routers that provide WiFi for mobile
devices, the RSSI values do not vary much by changing the
distance from 1 to 10 meters.

A Bluetooth adapter operates using a procedure of scanning
and inquiring. It often costs 5-15 seconds for current mobile
devices. Therefore, the sampling frequency of Bluetooth RSSI
is limited. Sometimes, if mobile devices move rapidly, the user
might lose the chance to record the Bluetooth RSSI values from
them. To remove this defect, we introduce the RSSI received
from the Zigbee Protocol. The feature of RSSI using Zigbee
is similar to Bluetooth RSSI, but Zigbee does not require a

long time to scan and connect to other devices. Also, Zigbee
is able to set the RSSI sampling frequency by the programmer,
with 1HZ or 0.5HZ as common RSSI sampling frequencies.
Although most current smartphones are not integrated with
Zigbee, we consider adding Zigbee to have more RSSI samples
to improve the localization accuracy, and consider that future
generations of smartphones may have similar capabilities.

2) WiFi and Direct-WiFi Filter: RSSI is known to perform
poorly in indoor environments. Some variations of RSSI values
may cause errors in RSSI-distance mapping. For example, if a
moving object is between the two Zigbee sensors (or Bluetooth
adapters), the received value of RSSI will decrease. Then,
if we use a RSSI-distance mapping in training datasets, the
corresponding distance will increase.

Therefore, we need to filter this interference (noise). As
mentioned in the previous section, although WiFi is not sensitive
to the distance, WiFi is sensitive to the interference. By this
feature of WiFi, we design a filter to reduce the effect of noise
caused by interference.

Since a user’s movement cannot change abruptly, if the
received WiFi RSSI varies each 10 seconds more than 5dBm, we
assume such obvious change of RSSI is caused by interference.
We define the 10 second time period as a "Noise Period (NP)".
We use the average RSSI value in the closest previous period
that is not a NP to replace the RSSI values in the NP. As shown
in Figure 10, when the WiFi signal encounters interferences at
two NPs (116-119 seconds, 166-169 seconds), the values of
RSSI decrease sharply. After using the WiFi filter to detect NPs,
the noise samples of Bluetooth and Zigbee RSSI are corrected
by the average RSSI value in the closest previous time periods.

In most of indoor scenarios, people receive WiFi signals by
wireless routers. However, some indoor environments do not
have such infrastructures. Wi-Fi Direct is a Wi-Fi standard that
is adopted on most of popular mobile devices, such as iPhone,
iPad, and Android smartphones. This technology enables
devices to connect with each other without requiring a wireless
access point, such as a wireless router. Each smartphone/tablet
can open the WiFi-direct option, which means each mobile
device can detect others by WiFi and receive the RSSI values
from these devices. If the WiFi values obtained by Directed-
WiFi changes sharply, it is also seen to be a NP and be handled
by the WiFi filter.

F. Combine Triangle Calculation and Dead Reckoning
Although triangle calculation is close to the ground truth,

it still has the errors caused by the mapping. In fact, for dead
reckoning, its errors are caused by the variation of accelerometer.
It is difficult to predict the range of error. Therefore, the ideal
situation is to select the better localization result from both
of the two approaches in each time period. To achieve this
goal, we define following two events to indicate when the dead



Algorithm 1 WiFi-Filter Algorithm
Input:

The RSSI samples collected from Bluetooth, Zigbee, WiFi
adapters, threshold of WiFi filter

Output:
Filtered RSSI values of Bluetooth, Zigbee

1: for i=1;i < num of periods; i++ do
2: if variation of WiFi RSSI value > threshold then
3: // Find RSSI values of the closest previous period
4: call WiFi-Filter(i-1);
5: // Replace the abnormal RSSI values in the NP
6: for j=1; j < number of Bluetooth samples in i (nb); j++ do
7: BluetoothRSSI[i][j] =

∑nb
j=1 BluetoothRSSI[i−1],[j]

nb
8: end for
9: for k=1; k < number of Zigbee samples in period i (nz);

k++ do
10: ZigbeeRSSI[i][k] =

∑nz
k=1

ZigbeeRSSI[i−1][k]

nz
11: end for
12: else
13: Return BluetoothRSSI[i][nb];
14: Return ZigbeeRSSI[i][nz];
15: end if
16: end for

Algorithm 2 Algorithm of Combination Approach
Input:

The computed location by dead reckoning approach and triangle
calculation at time period i: (xi, yi)d, (xi, yi)t,

Output:
The combination location results at time period i:(xi, yi)c

1: while each time slot i do
2: if time period i is Noise Period (NP) then
3: Call WiFi-Filter(i);
4: Recompute the (xi, yi)t by updated BluetoothRSSI[i][nb]

and ZigbeeRSSI[i][nz]
5: else
6: (xi, yi)c=(xi, yi)d
7: if event1 or event2 then
8: (xi, yi)c=(xi, yi)t
9: end if

10: end if
11: Return (xi, yi)c
12: end while

reckoning approach is not reliable:
Definition: Event 1: In a certain time period i and in

comparison to the previous time period i-1, the accelerometer
changes sharply, ax or ay or az changes more than 1m/s2.

Definition: Event 2: In certain time period i and in
comparison to the previous time period i-1, the position of
mobile device changes sharply, x or y changes more than 5
meters.

When the WiFi filter detects the Noise Period, the triangle
calculation approach is not reliable. Therefore, we provide the
mechanism for selecting best approach between dead-reckoning
and triangle computation in Algorithm 2.

G. Step Benefits
Steps are counted by the pedometer applications on

smartphones, however, most pedometers are highly inaccurate
[15], [23], [24]. One intuitive reason is that the pedometer
integrated on the smartphone relies on the accelerometer. The
accelerometer values on smartphone do not equal to human
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bodies’ accelerations, it is difficult to identify an acceleration
signature in human walking pattern without errors.

Different people have different lengths of steps. To enable
CRISP to count steps, it is necessary to estimate the length of
the step for each user. We employ a linear step-frequency model
as equation (3), which is described by Li [23] and Hilsenbeck
[24]. The symbol fk denotes the step frequency that can be
counted manually in a short training period k, its minimum
time length is 20 seconds. The symbol dk is the length of the
step. Then, we develop a two dimension data set containing
the average step length and average step frequency of different
people as illustrated in Figure 11. Seven groups of volunteers
present their own features. We fit the linear model by using the
least square to set a and b. Thus, by conducting a lightweight
training phase, the user can get his/her own step length for
counting steps.

In our approach, users obtained the location information
continuously in different periods. Within a short time period i,
we may assume people walk straight. Computing by equation
(4), it is simple to count steps a user have walked within a
certain time period. By adding the number of steps that have
recorded in each time period, the user can determine the number
of steps they walked in total.

dk = a× fk + b (3)

number of steps =

√
(xi − xi−1)2 + (yi − yi−1)2

d

(4)

H. Running CRISP in the Cloud
CRISP is a light weight application. Users upload their

received RSSI and location messages from other cooperating
devices periodically. Thus, the prepared distance-RSSI maps
stored on the server transfer received RSSI values to distances
continuously. Besides, because we deploy the tasks 1) forming
polygons of devices, 2) decomposing polygons to triangles, 3)
solving equation (3) to compute the location of a user’s device
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Fig. 12: The equipment structure and data sample format in
our experiment.

on the server instead of running it on a mobile device.

III. EVALUATION
A. Experimental Setup

We built a prototype of CRISP on Android mobile devices
using the version KitKat. In the experiments and simulations
on each device, we combine Bluetooth, Zigbee and Direct-
WiFi Filter together to do the triangle calculation. Although
current mobile devices, such as the Samsung Galaxy and the
Google Nexus smartphones do not integrate Zigbee on them, in
our experiment, we bound the Telosb Zigbee sensors on these
mobile devices and run the application programs on TinyOS
[25]. Since the Zigbee model is not supported by Android OS,
we record the Zigbee and Bluetooth data synchronously by
sharing the timestamps. The frequencies of Zigbee and direct
WiFi samples are 1HZ and 0.25HZ. The sampling frequency
of Bluetooth RSSI is around 0.1 to 0.2 HZ. The format of the
data sample is shown in Figure 12. For each data sample, after
receiving Bluetooth and Zigbee RSSI values translated by the
trained mapping relation, the estimated distance between each
pair of devices is determined.

The dead reckoning approach is implemented as follow: we
set each slot period to be 1 second. Then, we use equation (1)
to compute the movement direction and the movement distance
in each segment. By collecting the computed segments in each
time period, we generate the user’s trace. The users carry the
devices and walk freely in rooms or hallways.

For our evaluation and discussion, we mainly seek to answer
four questions: 1) Does our approach improve the mobile
devices’ localization accuracies in different environments? 2)
Does our approach count walking steps for users effectively? 3)
How does the Zigbee model and WiFi filter assist the Bluetooth
model? 4) For one user, does encountering a greater number
of users who also use CRISP improve his/her own position
accuracy?

B. Metric of Measurements
Two metrics are introduced in the evaluation: 1) error of

accumulative steps indicates the different number of steps
counted between third-party application and CRISP 2) error of
distance is the distance (in meters) between the ground truth
and the estimated position.

C. Scenario Measurements
As shown in Figure 14, we conduct the experiments for 45

minutes in a room of the Engineering College at Michigan State
University. There are three users who carry mobile devices and
walk freely. All use CRISP and interact with others frequently.
As illustrated in Figure 14(b), the X axis refers to the time of

 Dead Reckoning Trace 

Combination Approach Trace 

!"#$%#&'((

!"#$%#&'((

Fig. 13: Traces comparison in real floor plan.

the experiment. the Y axis refers to the error of distance of a
user A. The blue line, red line, green line refer to the distance
errors of dead reckoning, triangle approach and the approach
combining both of them. As shown in Figure 15, we conduct
the similar experiment in a hallway. From the two types of
experiments, after cooperating with the triangle computation,
the combination approach performs best. The average deviation
from dead reckoning is reduced to 0.5 meters.

We repeat our experiments 200 times by simulations. When
simulating the dead-reckoning approach, we adopt equation
(1) and obtain the acceleration values from the accelerometer
on the smartphone periodically. Then, we add random errors
of acceleration on the x, y, z axes, the error range is from
−1m/s2 to 1m/s2. For the triangle computation, we add -10
to 10 percentage distance errors for each side of the triangle,
randomly. The time of each experiment group is reduced from
45 minutes to 1000 seconds. As Figure 14(c) and Figure 15(c)
display, at a specific time point, the data samples on the each
line refer to the average values of distance errors obtained in 50
times of simulations. The shadow of each line is the confidence
interval of computed values. The two figures indicate that after
many simulations, the combination approach has more accurate
results than the dead reckoning and triangle calculation. It
achieves the error range that is within 1 meter.

We extend our experiment from one place to an indoor
building with multiple rooms and hallways: a user walks with
the mobile device and communicates with other devices. All
devices are installed and running CRISP. As depicted in Figure
16, the dash lines refer to the time points when the user changes
their room. For example, at the 50th second, a user leaves a
room and enters the hallway. The localization results of the
combination approach are more accurate than the other two
approaches, especially for the dead reckoning approach. The
errors of localization using CRISP are still within 1 meter.
Figure 13 provides the overview of the two estimated traces in
our floor plan.

We also focus on step counting in this experiment. Figure
17 illustrates the step counting and two pedometers on the
smartphones. The stems refer to the accumulative error of
the number of walking steps computed by the combination
approach in CRISP. The remaining two lines refer to the
accumulative error of number of walking steps caused by two
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Fig. 14: Experiment measurement in a room.

(a) Hallway environment
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(b) Hallway measurement for one time
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Fig. 15: Experiment measurement in a hallway.
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Fig. 16: CRISP measurement in the complex indoor
environment.
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Fig. 17: Comparison of accumulative step errors for
three applications.

popular pedometer applications (Noom Walk, ACCUPEDO)
from Google Play [16], [22]. CRISP maintains less errors than
the other two pedometers in the whole procedure.

IV. DISCUSSION
A. Compare different types of signals

CRISP integrates Bluetooth, Zigbee and WiFi filter to
implement triangle calculation for measuring users’ locations.
To analyze the effectiveness of each technology, we conduct the
following evaluation: while maintaining the same experimental
environment, as given in Figure 18(a), first, we use Bluetooth
RSSI without the Zigbee sensor and the WiFi filter to collect
RSSI. Second, by adding the Zigbee approach to the Bluetooth
approach, we observe the indoor localization results. Third,
the green line on the figure denotes the experimental results
by combining all the three technologies. Then, we simulate
our experiments 100 times. The simulation is generated as in
the single room evaluation section. The time period is reduced
from 45 minutes to 1000 seconds. Figure 18(b) presents the
localization results by the repeated simulations. As shown in
Figure 18, we believe that 1) adding more RSSI samples from
Zigbee model and 2) filtering the interferences in the Noise
Period by the WiFi filter are helpful for improving the indoor
positioning results.

B. The number of mobile devices encountered influence the
localization accuracies

In this section, we discuss whether the number of mobile
devices a user encounters can influence the localization accuracy.

First, we assume that Alice carries a smartphone and walks
freely in one room within 500 seconds. Then, other people help
Alice to locate herself by CRISP. When we start this experiment,
we set two control groups: 1) the group includes Bob and
Carson, who will help Alice to apply triangle computation, and
2) the group contains Bob, Carson, and David to do triangle
computation after using “polygon decomposition.” According
to our observation in Figure 19(a), the “3+1” control group
has less errors than the “2+1” group. Then, we repeat our
experiments 500 times of simulation, shown in Figure 19(b).
We draw the same conclusion as what we had in the physical
experiments.

To further support the above conclusion, a more complex
experiment is conducted: a user of CRISP walks in an indoor
building. Three traces are generated: 1) a user does not meet any
other users (a user’s location is computed by dead reckoning),
2) a user always has other two users assisting him to locate
himself by the combination approach 3) a user always has three
to four users to help him to locate himself. The trace continues
1000 seconds and we simulate such traces 100 times. In Figure
19(c), trace 1) only uses dead reckoning and often has a serious
deviation (around 3 meters) from the ground truth. The trace
3) uses a combination approach and encounters more people
to achieve the best performance.

Based on the above evaluations, if all users run CRISP on
their mobile devices, the localization accuracy of each user can
be improved.
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Fig. 18: Shows Bluetooth RSSI, Zigbee RSSI, and WiFi filter to improve the experiment results, respectively.
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Fig. 19: Number of devices encountered to differentiate localization accuracies.

C. Threshold of WiFi Filter
In our previous experiments and simulations, we set the

threshold of WiFi filter at 5 dBm. In fact, if we set P as the
threshold for filtering, if the interference that causes the value of
RSSI change is less than P , the interference will be neglected.
If we set the threshold of the WiFi filter too low, the normal
variation of RSSI values will be judged as the interference, and
hence, an optimal threshold of WiFi filter is a key factor. Based
on the Samsung Galaxy S5 and Google Nexus 7 devices, we
use our approach in a room in the Engineering Building and
conduct the experiment as described in the previous section.
The only difference is that we test different thresholds of the
WiFi filter: 3dBm, 5dBm, 10dBm, 15dBm. After 5 minutes’
of experiments, the successful rate of WiFi filter detection is
given in the following table:

Real Interference Detected Interference Misjudge Interference
3dBm 8 times 8 times 23 times
5dBm 8 times 7 times 2 times
10dBm 8 times 2 times 0 times
≥15dBm 8 times 0 times 0 times

Real Interference refers to the number of times interference
was generated in the experiment; Detected Interference refers
to the number of times interference was detected by the WiFi
filter; Misjudge Interference is the number of false positives
of interference occured. From the table, we observe when the
value of the threshold equals 5, CRISP performs best.

D. Complexity of our approach
To analyze the complexity our approach, we focus on

the worst and the best case of CRISP, respectively. For the
worst case, we assume all devices are in a reachable range
of the Bluetooth adapter (or Zigbee base station), namely,
the connection should be created between each of the mobile
devices. If the system contains n devices, the complexity of the
system is O(n2). For the best case, a user only accesses other
people in different ranges of Bluetooth adapter (or Zigbee base
station), the complexity of the system is O(n). Therefore, the
complexity of our approach is acceptable, we can apply it in

large scenarios even if the number of devices is not small.

V. RELATED WORK
A. Indoor Localization

Traditional indoor localization can be categorized into two
types:

Device-based approach: Deploying specific infrastructures
or require users to carry specific devices to obtain accurate
localization results. The first indoor localization system - Active
Badges [3] is based on infrared technology. Each person wore
an infrared beacon to report its position to a server. Ultrasonic
localization systems such as Cricket [4] and Dolphin [5] were
proposed later. Some localization systems obtained 3D location
sensing by RFID, such as SPOT ON [6] and LANDMARC [7].
RFID Tags and measured RSSI calculated distances between
objects. Although these device-based approaches often have
high accuracies in certain equipped environments, it is difficult
to deploy such systems in many application environments.

Device-free approach: Device-fee approaches often adopt
signal fingerprinting [8]–[12] either in a training phase or via
crowdsourcing. In [8], RSSI measurements are recorded at
each location when a person stands at certain positions (offline
training). When the system begins localization (online testing),
matching is performed by using the maximum likelihood
criterion. RSSI measurements are compared with the known
training data and the highest probability position is chosen.
In addition to RSSI, Surround-Sense [9] adds other features
such as ambient sound, light, and color to construct an indoor
map. It can enhance the accuracy of matching. Although these
approaches reduce the cost of devices, the accuracy of device-
free indoor localization depends on the size of training data.
Also, the procedure of training data is a challenge for those
approaches.

Smartphone approach: Dead reckoning [13] localization
uses a previous determined position. The application can
compute user’s current position by a physical formula. However,
the accumulative errors caused by sensors or algorithms are not
easily reduced. Unloc [18] uses a virtual landmark to improve
the accuracy, since the various manners that people carry the



smartphone, the direction obtained from acceleration is not
as same as the people’s real direction. Although SAIL [26]
employs the propagation delay of the signal traversing between
single WiFi AP and smartphone to eliminate the errors caused
by dead reckoning approach, but the localization results are
not highly accurate. By using computer vision and sensing
technologies [19], [20], [27], [28], some researchers fuse the
data from accelerometer, camera sensor, and acoustic sensor
to provide solutions for indoor localization, but the signal
processing and recognition in indoor environments are still
challenging for these systems.

B. Pedometers on Smartphones
Different from the traditional pedometers, some pedometers

use smartphones sensing based architectures as a major system
component to counter users’ steps. Hongman et al. [14]
designed a pedometer system by using the accelerometer and
orientation sensors. They analyze the top (peak) and bottom
(trough) of the acceleration wave and provided a configured
threshold to filter the accelerometer noise. By combining the
microphone and accelerometers, Inoue et al. [15] proposed a
two-tier approach involving multilevel segmentation and activity
recognition. On each axis, mean, frequency-domain energy, and
frequency-domain entropy are extracted as the features. Then,
the correlation of the combined axis was also extracted.

Besides, some applications published in Google Play or
Apple Store [16], [17] can count people’s steps by using
accelerometer or other inertial sensing approaches. However,
such pedometers have limitations: 1) although these pedometers
contain some filters to reduce the noise, they can not distinguish
some movements of humans’ bodies from walking, such as
shaking hands, 2) the algorithms to judge the steps based on
the change of accelerometers are not perfect.

CRISP, compared to the traditional indoor localization
technologies, does not require any extra device other than
the users’ smartphones or tablets, does not require the phase
of training data for finger print map. Compared to other
smartphone-based indoor localization approaches, just using
RSSI, our approach has higher accuracies than other dead
reckoning based approaches and avoids complex data fusion
and analysis.

VI. CONCLUSION
We present a RSSI based indoor localization system called

CRISP. Different from traditional indoor localization systems,
a user walks in an indoor environment and opens the Bluetooth
scanning option on a smartphone. The smartphone interacts
with other smartphones and exchanges RSSI values. CRISP
not only improves the devices’ localization accuracies, but also
provides the extra benefits - the number of walking steps for
the user who holds a smartphone.

In CRISP, we build relations between RSSI and distances for
different mobile devices. CRISP uses geometry computation to
reduce the errors caused by dead reckoning. By our experiments
and evaluation in the Engineering Building of Michigan State
University, we show that if a walking user who carries a mobile
device and uses CRISP in a building, and if he/she encounters
other people using CRISP, the localization results will be more
accurate. The range of error is within 1 meter. We combine
the Zigbee RSSI values to the RSSI obtained from Bluetooth
to collect more samples, and use a filter that is based on WiFi.
Both of the two technologies improve the localization accuracy
in our evaluation. With known location information, CRISP can

count a walker’s steps and reduce the common errors caused
by smartphone based pedometers.
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