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A B S T R A C T

This study examines the impact of green space health on local flooding based on the analysis of eighty-two
watersheds in four Texas metropolitan statistical areas: Dallas, Houston, San Antonio, and Austin. The runoff
records in October 2007 and October 2012 were selected for the assessment. The study met the methodological
challenge posed by comparison by using the Normalized Difference Vegetation Index (NDVI) datasets produced
based on the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery of the 250-m resolution as a
proxy to represent the health of green space. Two linear regression models were employed to explain the var-
iation in mean daily runoff depth in 2007 and 2012, while controlling multiple contextual variables.Results
indicate that watersheds containing healthier green spaces were likely to generate lower amounts of runoff in
both periods. Standardized coefficients of green space health also show that the NDVI is a powerful and sig-
nificant predictor to explain variation in runoff. These findings illustrate the important role of urban green
spaces in attenuating local flooding and may provide planners and decision-makers with a method to consider,
using this kind of objective greenery index in further developing local and regional green infrastructure and
land-use plans.

1. Introduction

The world’s urban population has increased by approximately 423%
from 1950 to 2014 (United Nations, 2014). In the United States, about
82.5% of the population resided in urban areas in 2014, and its per-
centage is expected to increase to more than 89% by 2050 (United
Nations, 2014). The increasing urban population has increased demand
for space in expanding urbanized areas, which has often brought about
negative consequences in natural environments. Rapid urbanization has
contributed to replacing existing natural green spaces with impervious
surfaces (Booth et al., 2002; Kim et al., 2016a,b,c). The alteration of
undeveloped lands affects the function of watersheds directly or in-
directly by changing the rate/volume of surface runoff and the fre-
quency/severity of storm events (US Environmental Protection Agency
(USEPA), 2009). In response to these growing impacts of urbanization
on hydrological process, flooding has become the most significant and
frequent disaster among 633 urban areas worldwide (United Nations,
2012).

Previous studies have documented benefits of urban green spaces.
Urban green spaces contribute to improving community members’

physical and mental health (Hartig et al., 1991; Kaplan and Kaplan,
2003; Kim et al., 2014; Kim et al., 2016c; Ulrich et al., 1991), and in-
creasing economic values of the neighborhood (Kim et al., 2016a,b,c; Li
et al., 2015; Morancho, 2003; Sander et al., 2010; Tyrväinen, 1997).
Various ecological benefits of urban green spaces include air and water
pollution mitigation, and land surface temperature reduction (Alberti,
2005; Chen et al., 2014; Connors et al., 2013; Li et al., 2012; Nowak and
Greenfield, 2012).

In addition, the effect of green spaces upon surface runoff has been
widely explored in previous studies applying various measurements
(e.g., field survey, lab experimentation, and modeling). Zhang et al.
(2015) investigated how the changes of landscape pattern influence
overall runoff in Beijing, China, from 2000 to 2010, by employing 2.5-
m resolution images. The findings demonstrated that landscape patches
of green space decreased continuously during the study period and the
reduction ratio of rainwater runoff declined from 23 to 17%,
consequently.Liu et al. (2014) assessed the impact of green infra-
structure on urban flooding reduction through a simulation model and
found that the storm runoff volume can be reduced by 15% when an
integrated green infrastructure system is employed. Sterling et al.
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(2012) examined the relationship between global land cover change
and runoff increment through land surface model (LSM) simulations.
They discovered that the reduction of forests and grasslands was one of
the largest factors that increased runoff (projecting 6.8% of increment
between 1950 and 2000). In general, land cover change through urban
development increased the surface runoff or streamflow as the pro-
portion of impervious surfaces increased (Arnold and Gibbons, 1996;
Fox et al., 2012; Kim and Li, 2016; Walsh et al., 2005). Thus, protecting
as well as maintaining healthy green spaces will be an important matter
for the future development. There is no clear definition of what a
healthy green space is. Typically, however, it is often described as an
ecosystem that is productive, diverse, sustainable, and resistible to
stress through time (Rapport, 1992; Tzoulas et al., 2007). This study
used Normalized Difference Vegetation Index (NDVI), based on spectral
reflectance in the red and near-infrared regions, as an indicator of
“greenness” or relevant amount of green biomass for a certain geo-
graphic area (Gamon et al., 1995).

Although several studies have used land cover data in estimating
runoff generation, more empirical studies will be necessary to quanti-
tatively measure the impact of the healthiness of green spaces on runoff
reduction in urban areas. A few previous studies have attempted to
objectively examine the relationship between stormwater runoff vo-
lume and urban green spaces using NDVI. Particularly, classified land
cover images and NDVI satellite imageries were heavily used from
previous studies to estimate the value of green areas. NDVI, however,
has been shown to better correlate with tree canopy cover rather than
other land covers (Li et al., 2015). NDVI has been adopted by previous
studies as a proxy for representing the productivity of vegetation and
describing the condition of urban green spaces (Jenerette et al., 2011;
Kahya et al., 2010; MacDonald et al., 2010; Mansfield et al., 2005;

Odindi and Mhangara, 2012; Rafiee et al., 2009). Higher NDVI scores
indicate larger green biomass and healthier vegetation status. Since the
watershed plays an important role in determining the characteristics of
hydrology pattern, including the amount of runoff, understanding how
green spaces are structured at the watershed-level will provide planners
a better guideline in conserving and developing future green spaces.

In various disciplines, researchers used NDVI to quantify the influ-
ence of urban green spaces on urban heat island effects (Mackey et al.,
2012; Wilson et al., 2003), property values (Payton et al., 2008; Li
et al., 2015), and obesity prevention (Bell et al., 2008; Liu et al., 2007).
In addition, NDVI has been adopted in previous studies to map im-
pervious cover (Knight and Voth, 2011) and identify spatial patterns of
phosphorus forms in Stormwater Treatment Areas (STA) (Corstanje
et al., 2016). The use of NDVI affords tremendous potential to expand
the scope of current literature by advancing the measurement of green
space health and assessing the impact of green space health on storm-
water runoff.

The present study evaluates the efficacy of green spaces in urba-
nized areas on runoff reduction in four of the largest Metropolitan
Statistical Areas (MSAs) in Texas, USA: Dallas, Houston, San Antonio,
and Austin. Specifically, this research seeks to identify whether the
health of urban green space could be a strong predictor to explain the
variation of surface runoff. At the outset, we hypothesized that mean
runoff depth would be negatively associated with the green space
health while controlling for key factors related to runoff generation.

The next section introduces the background of the study area,
sample collection, concept measurement, and assessment methods.
Section 3 reports the results. Section 4 discusses the findings and pro-
vides concluding remarks.

Fig. 1. Four MSAs and the selected watersheds.
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2. Material and methods

2.1. Study areas and sample selection

The population growth rate of Texas was 9.24% from 2010 to 2015,
which ranked in the top three fastest growing states in the U.S. (US
Census, 2015). Particularly, the population of four Texas MSAs together
increased by more than 400,000 between 2014 and 2015, which was
the highest growth rate among all other MSAs in the U.S. (US Census,
2016). Due to those rapid population growth rates, the land con-
sumption rate on the outskirts of those urban areas has increased sig-
nificantly (Ewing and Hamidi, 2014; The Brookings Institution, 2016).
A substantial amount of green areas has been converted into impervious
surface and thus instigated more urban flooding events. Among the four
largest MSAs in Texas ranked by population – Dallas-Fort Worth-Ar-
lington, Houston-Sugar Land-Baytown, San Antonio-New Braunfels,
and Austin-Round Rock-San Marcos – we selected specific watersheds
that were delineated from the U.S. Geological Survey (USGS)’s gauge
stations. Among 195 USGS gauge stations within each of the MSA
boundaries, watersheds were delineated where a gauge station had
runoff records for October 2007 and October 2012. Even if gauge sta-
tions had the records, if the delineated watersheds did not overlap with
the MSA boundary by more than 50% they were excluded. A total of 82
sample watersheds were finally chosen for this study (see Fig. 1).

The average annual precipitation of the regions was about 994 mm
(39.13 inches) from 2000 to 2015, and the highest month was October
with an average monthly rainfall of 116.3 mm (4.58 inches; Texas
Water Development Board (TWDB), 2017). The median sample wa-
tershed size was 159.9 7 km2.

2.2. Research design

2.2.1. Dependent variable
The dependent variable, average daily peak runoff depth, was

measured from the streamflow record of 82 USGS gauge stations for
October 2007 and October 2012. To normalize and control the size of
watersheds, runoff depth (mm) was used for this study rather than
adopting the streamflow (m3/s). Runoff depth was calculated through
the following equation (Eq. (1)), in order to convert the unit from cubic
meter per second to millimeter.

×

×

Run off Depth (mm) Streamflow (m /s)
Watershed Size (m )

86, 400 (s)

1, 000 (mm/m)

3

2

(1)

Runoff depth has been commonly used by the USGS for its estimation of
mean and peak runoff volume (Kim and Li, 2016). Mean daily peak
runoff depth was 210.08 mm in 2007 and 42.45 mm in 2012. Due to the
distribution of the runoff depth, which was positively skewed, the de-
pendent variable was log-transformed before running statistical ana-
lysis.

2.2.2. Independent variables
NDVI, an index for the health of green spaces, is one of the most

commonly used indices to compute values of VI. NDVI is used by many
researchers to conduct studies between vegetation conditions and other
environmental variables. NDVI is calculated by the difference between
near infrared and red band values then divided by the sum of near
infrared and red band values based on a per-pixel basis of a remote
sensing image. Fig. 2 shows the example of an aerial photo and NDVI in
a specific watershed.

For this research, NDVI is one of the most important independent
variables in the final models. Based on previous studies, we selected the
NDVI datasets produced based on the Moderate Resolution Imaging
Spectroradiometer (MODIS) imagery of the 250 m resolution. The da-
tasets based on 30 m Landset were not selected as they were not
available before the year of 2013.

In this study, NDVI data were collected through the Global
Agriculture Monitoring (GLAM) Project (Becker-Reshef et al., 2010)

Fig. 2. Example of an aerial photo and NDVI in a specific watershed.
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based on the National Aeronautics and Space Administration’s (NASA’s)
flagship instrument MODIS imagery. The GLAM NDVI data are pro-
vided in the interval of 16 days with a 250 m spatial resolution in the
format of a raster image and available from 2000 to present.

Based on the GLAM database for the study area, by diminishing the
utility of certain time series images due to cloud and cloud shadow
contamination, October was considered as the most appropriate time
for using the NDVI images to calculate greenness of the selected wa-
tersheds. This time of season also had the highest average monthly
rainfall as well as runoff. Thus, we used the average NDVI values of
October in the years 2007 and 2012.

Contextual control variables that are known to influence surface
runoff have been measured, which are a mixture of biophysical, basin
characteristic, and geographical factors. First, four variables are in-
cluded in the biophysical factors: average precipitation, soil porosity,
drainage density, and the percentage of 100-year floodplain.
Precipitation is commonly known as the strongest predictor of surface
runoff (Brody et al., 2013). More amounts of rainfall will result in more
volumes of runoff. Average precipitation for October 2007 and October
2012 were obtained from the Parameter-elevation Regressions on In-
dependent Slopes Model (PRISM) Climate Group, which uses the cli-
matologically-aided interpolation (CAI) method in producing the sur-
face precipitation record. Soil permeability generally relates with the
infiltration capacity and affects overall volume and frequency of runoff
during the storm events (Chang and Franczyk, 2008).

The porosity of soil was measured and analyzed using the State Soil
Geographical Database (STATSGO). Drainage density, a ratio of total
stream length to watershed area, is often employed to identify the hy-
drologic responses of a landscape (Berger and Entekhabi, 2001). Be-
cause streams that are highly cut apart tend to respond promptly to
rainfall, watersheds with higher drainage density will generate more
amounts of runoff (Bell, 2004; Horton, 1932). Hydrography data de-
rived by the United States Department of Agriculture (USDA) were used
in ArcGIS to calculate this ratio. The 100-year floodplain indicates a 1%
chance of inundation in each year for a certain area, and it has been
used as a one of key markers of flood risk (Brody et al., 2013). Con-
sidering its impact on flood occurrence, we computed the percentage of
floodplain for each sample watershed with the data acquired from the
Federal Emergency Management Agency (FEMA) Map Service Center.

Second, runoff may also differ from the basin parameters.
Watersheds that have steeper slopes and are more elongated tend to

produce more runoff. Both mean slope and the elongation ratio (basin
shape) were calculated using 30 m resolution digital elevation models
(DEMs) from the National Hydrography Dataset (NHD) Plus Version 2.

Finally, two geographical factors (impervious cover and wetland)
that may directly or indirectly affect surface runoff were included as
control variables in this study’s statistical model. Impervious surfaces
have been shown from numerous studies to exacerbate the volume,
frequency, and magnitude of stream flow (Arnold and Gibbons, 1996;
Braden and Johnston, 2004; Paul and Meyer, 2001). In contrast, natural
wetlands have been demonstrated to reduce and mitigate rainfall runoff
(Bullock and Acreman, 2003; Highfield and Brody, 2006). Impervious
cover was measured by calculating the proportional areas of developed
lands that were previously classified in the USGS’s National Land Cover
Database (NLCD; land cover code from 21 to 24). The percentage of
wetlands was computed by including woody wetlands and emergent
herbaceous wetlands that were classified as land cover code 90 and 95,
respectively, in the NLCD. Table 1 summarizes the measures of each
variable.

2.3. Data analysis

This research used ordinary least squares (OLS) regression analysis
to explain the variation in mean daily runoff depths. Due to the limited
data availability for various control variables, we were able to gather
data for the full list of variables only for two years: 2007 and 2012. We
decided to employ the cross-sectional analysis in which our modeling
work is conducted separately for 2007 and 2012. For each year, we
regress the log of the runoff amount over NDVI and the control vari-
ables based on the OLS estimator. An alternative to our analytical ap-
proach would be to calculate differences from 2007 to 2012 for all
variables and assess how the change of NDVI (2012 vs. 2007) influences
the change of the runoff amount based on the same OLS regression
framework. However, a major shortcoming of such an alternative is that
the change in runoff might be due to some endogenous climatic factors
which influence both the runoff and the NDVI. Considering these pos-
sibilities, we have analyzed two models separately with the dependent
variables of average runoff depth for two periods, while controlling the
same set of variables that are specified in the above section. Through
the diagnostic processes, we ensured that any of our statistical as-
sumptions (e.g., model specification, multicollinearity, hetero-
scedasticity, outliers, and spatial autocorrelations) were not violated.

Table 1
Research construct.

Variable Measurement Source; Analytical tool Range Mean S.D.

Independent variable
Green space health (NDVI) Average NDVI values in October 2007 GLAM; ArcGIS 0.38–0.78 0.54 0.07

Average NDVI values in October 2012 0.36–0.72 0.52 0.08

Dependent variable
Mean runoff depth (log-

transformed)
Average daily runoff (mm) at each USGS gauge station in October 2007,
divided by watershed size

USGS Gauge Stations, ArcGIS 0.21–3.48 1.49 0.85

Average daily runoff (mm) at each USGS gauge station in October 2012,
divided by watershed size

0.04–2.72 1.00 0.76

Control variables
Precipitation Mean annual rainfall in October 2007; units in mm PRISM Climate Group 11.06–150.31 66.99 39.14

Mean annual rainfall in October 2012; units in mm 14.34–82.25 31.63 15.41
Slope Average watershed slope; units in percentages USEPA – NDHPlus V2 0.13–11.64 1.99 2.19
Shape Elongation ratio USEPA – NDHPlus V2 1.42–26.26 7.41 4.14
Soil permeability Average watershed soil permeability; units in inches per hour NRCS – STATSGO 0.10–4.88 1.18 0.93
Floodplain area Area within the FEMA-defined 100-year floodplain; units in percentages FEMA Flood Map Service

Center
4.25–46.72 15.79 9.76

Natural drainage density Ratio of total stream length to basin area USDA 0.21–2.01 0.61 0.25
Impervious surface Proportion of impervious surface in 2006; units in percentages NLCD 0.11–44.00 14.46 11.22

Proportion of impervious surface in 2011; units in percentages 0.50–99.96 43.20 33.93
Wetland Proportion of wetland in 2006; units in percentages NLCD 0–5.95 1.71 1.65

Proportion of wetland in 2011; units in percentages 0–20.29 2.92 4.05
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3. Results

As Table 3 illustrates, population in all four Texas MSA increased
significantly, by 23.5–37.3%, from 2000 to 2010. However, population-
weighted density, which refers to the average density of the census
tracts within the MSA, shows dissimilar growth rates for each me-
tropolitan area (US Census, 2013). Dallas, Houston, and Austin MSAs
had negative values, while San Antonio MSA had a positive rate during
the same period. This indirectly indicates that Houston, Dallas, and
Austin MSAs are growing rapidly, but land developments are occurring
more significantly near the suburbs. San Antonio MSA data only
showed that developments are concentrated at higher density areas.
Although the number of sample watersheds differs by MSA, we could
consequently identify that median runoff of watersheds within Dallas
and Houston MSAs generated more runoff compared to San Antonio
ones. Watersheds within Austin MSA, however, produced relatively less
runoff than San Antonio MSA. We may possibly expect the reason is
because: 1) several sample watersheds were located outside the inner
city area for the Austin MSA, 2) impervious surfaces were fairly low
compared to other MSAs, or 3) impacts of Austin’s strict watershed
protection regulations that were mainly to protect Edwards Aquifer,
which is the principal drinking water source of Austin and nearby areas.

Table 2 shows regression results with the OLS model. The variance
of NDVI, along with the control variables, could explain 29% of the
variance in the runoff. Keeping other variables constant, a one-unit
increase in NDVI would reduce the runoff amount by 2.7% in the 2007
model; such an effect is highly significant. A number of control vari-
ables have a significant impact on the runoff. In the 2007 model, as
expected, a 1% increase in the overall slope and the impervious area
would significantly increase the runoff of a watershed by 14.3% and
2.1%, respectively. However, the increase of wetland area had an op-
posite association with the runoff. In the 2012 model, a 1% increase in
the elongation ratio (watershed shape), the impervious area, and wet-
land area would show significantly positive relationships be increasing
the runoff amount of a watershed by 3.9%, 1.3%, and 3.8%, respec-
tively. For every 1 millimeter increase in annual rainfall, the runoff of a
watershed would significantly increase by 0.8% in the 2007 model,
while it would increase by 1.3% increment in the 2012 model. The
runoff impact seems positive for soil permeability, natural drainage
density, and floodplain coverage; however, none of these effects is
statistically significant according to our model.

Our modeling results for 2012 are consistent with those from 2007
regarding signs of impact for NDVI and the control variables. The 2012

model seems to achieve a higher modeling performance, as the varia-
tion in NDVI and the control variables could explain 50% of the var-
iance of the runoff amount (compared to 29% for the year of 2007). The
2012 model reveals that an increase in precipitation, the impervious
area, or the wetland areas would significantly increase runoff in the
watershed; such findings are consistent with the 2007 model. However,
it is worth noting that according to the 2012 model, a one-unit increase
in NDVI would decrease the runoff amount by 1.3 %; such an effect is
only half of what was estimated by the 2007 model; with a higher
standard error, such an effect was significant only at the 0.1 level.

Standardized beta coefficients were presented to determine which
specific variables most influence the degree of average runoff. In 2007,
NDVI was the most powerful predictor in explaining the variance in
runoff, followed by slope, precipitation, wetland, and impervious area.
In 2012, however, impervious surface was the most significant pre-
dictor, followed by NDVI, precipitation, basin shape, wetland area, and
floodplain.

4. Discussion and conclusions

Impervious surfaces in urban areas have been proven to increase
stormwater runoff, which enlarges the vulnerability to more frequent
flooding events, and compromises the environmental health of streams
and rivers in watersheds (Arnold and Gibbons, 1996; Brabec, 2009; Yao
et al., 2015). Urban green spaces play a significant role in controlling
stormwater runoff and bringing other benefits to the community such as
ecological, social, health, and economic benefits (Kaplan and Kaplan,
2003; Kim et al., 2014; Li et al., 2012; Nowak and Greenfield, 2012;
Sander et al., 2010). Our research has contributed to literature by
documenting the watershed-level evidence about the benefits of green
spaces in retaining runoff water. We found that healthier green spaces
contribute to reduced runoff amounts. Our findings are consistent with
previous studies (Kim and Park, 2017; Nourani et al., 2017) about the
physiological mechanisms of vegetation to retain and cleanse runoff
water.

Since rapid urbanization has been considered one of the major is-
sues in the US cities, understanding ecological functions of urban green
spaces has been stressed in many previous studies (Forman, 1995;
Forman and Gordon, 1986; Turner, 1989). They have documented less
fragmented, larger, and well connected green spaces could contribute in
creating ecological healthy conditions (Dramstad et al., 1996; Forman,
1995). The reciprocal interrelationships between development de-
mands and the ecological quality of natural environments should be

Table 2
Regression results.

Variables 2007 Model (D.V.: Mean daily runoff depth in October 2007) 2012 Model (D.V.: Mean daily runoff depth in October 2012)

Coefficient Standard error Beta coefficient Coefficient Standard error Beta coefficient

Green space health NDVI −0.0272*** 0.0099 −0.4665 −0.0134* 0.0068 −0.2857
Biophysical characteristics Precipitation 0.0076*** 0.0027 0.3483 0.0129** 0.0049 0.2612

Soil 0.0868 0.1172 0.0946 0.0136 0.1002 0.0165
Drainage density 0.2370 0.3729 0.0684 0.2005 0.2658 0.0647
Floodplain 0.0151 0.0123 0.1733 0.0156* 0.0092 0.1998

Basin characteristics Shape 0.0298 0.0235 0.1447 0.0392** 0.0166 0.2131
Slope 0.1432*** 0.0505 0.3686 0.0600 0.0361 0.1729

Geographical characteristics Impervious surface 0.0206** 0.0103 0.2710 0.0127*** 0.0026 0.5672
Wetland 0.1407* 0.0714 0.2721 0.0381* 0.0223 0.2023

Constant 3.7250** 1.5725 1.1926 1.0941
F ratio 4.64 10.05
Probability > F 0.0001 0.0000
Adj. R2 0.2881 0.5014
Root MSE 0.7195 0.538

Note: N = 82.
*** p < 0.01.
** p < 0.05.
* p < 0.1.
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investigated to recognize the benefits of urban green spaces to respond
to the current urbanization issues. To assess the ecological quality of
green spaces, quantifying the natural environment brought many
challenges due to its complexity, temporal and spatial scales and data
availability.

For this study, we analyzed NDVI values from MODIS data to cap-
ture a proxy of green spaces’ ecological health conditions since the
values reflect the amount of green area. MODIS NDVI data provide
advantages in large study areas such as a citywide, statewide, and re-
gional level (Knight and Voth, 2011). Our final models indicated
healthy green spaces would positively contribute in decreasing surface
runoff in the selected metropolitan areas. However, comparing 2007
and 2012 models, we could discover that the beta coefficient of NDVI
significantly decreased in 2012 model. We may not directly compare
two models, but this result possibly elaborates that the portion of green
spaces is rapidly decreasing within the study area, and thus, protection
of green spaces should be more carefully considered at the local and
regional level. In addition, the increment of impervious surfaces is
suggesting that analyzing the development patterns in the future could
better explain the variation of runoff as metropolitan areas are con-
tinuously expanding in a rapid pace.

Understanding ecological functions of urban green spaces has been
emphasized to respond to climate change issues. During the past dec-
ades, extreme weather events hit cities in the U.S. and internationally at
an unprecedented rate, contributing to socio-economic damages. A
consensus is forming that resilient urban infrastructure systems are
urgently needed to adapt to climate changes. Urban green spaces serve
as a critical green infrastructure component to the functioning of urban
ecosystem services; however, their benefits and importance have not
been fully understood by policy makers. The growing understanding of
how green spaces may benefit communities and ecosystem services has
increasingly encouraged localities to adopt green infrastructure plan-
ning (Lynch, 2016). Specifically, local land-use decisions are known to
be one of the most significant factors that disturb watersheds and result
in landscape fragmentation (Brody, 2003). Planners and policy makers
are thus highly encouraged to embrace green space health indices when
developing land-use strategies and ordinances. Informed land use
planning may minimize rainfall runoff and conserve the overall eco-
system, and produce economic and social co-benefits. At regional levels,
state green infrastructure programs and initiatives as well as watershed
management plans should better incorporate ecological planning.

This study has several limitations. To develop more accurate esti-
mation models, the finer resolution of NDVI datasets should be con-
sidered for smaller scale of study areas. According to Vaze et al. (2010),
the accuracy and resolution of the input raster data should be carefully
considered as they influence the values of important spatial indices.
Yang et al. (2014) suggested that the optimal resolution for LiDAR
(Light Detection And Ranging) generated by DEM for large watershed
hydrological modeling was 10 m. However, they further suggested that
finer resolution may not be feasible for environmental modeling as the
modeling instrument had not been upgraded to use datasets at higher
resolutions. In addition, we used the 250 m resolution MODIS NDVI
data from the GLAM database; even though some previous studies claim
that these data are preprocessed to control for improving quality of
imagery with a less cloud cover problem, our NDVI data were not

completely cloud-free. Finally, this study used several variables sug-
gested by previous studies relevant to watershed runoff. Based on the
between-watershed variance in the cross-sectional data, we estimated
the runoff impact of green spaces. When multiple years of climate and
geospatial data become available, future researchers may conduct panel
data analysis, which models multiple years of observations for each
watershed simultaneously. The panel data analysis allows researchers
to control for watersheds’ time-invariant characteristics (e.g. socio-
economic capitals, political settings, and various geospatial features
that are difficult to quantify) and better illuminate the impact of urban
green space health on runoff.

Despite those limitations, the findings from this study may serve as
guidelines to create green hubs at the subdivision level and may help
regional agencies to identify and focus on strategic areas for linking
these hubs. Future researcher may expand this study by calculating the
direct and indirect costs and benefits associated with projects aimed to
enhance the health of green spaces.
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