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Abstract—Indoor localization is an emerging demand in many
large shopping malls. Existing indoor localization systems, how-
ever, require exhausted system bootstrap and calibration phases.
The huge sunk cost usually hinders practical deployment of the
indoor localization systems in large shopping malls. In contrast,
we observe that floor-plan images of large shopping malls, which
highlight the positions of many shops, are widely available in
Google Maps, Gaode Maps, Baidu Maps etc. According to several
observed shops, people can localize themselves (self-localization).
However, due to the requirements of geometric sense and space
transformation, not all people get used to this way. In this
paper, we propose EyeLoc, which uses smartphone vision to
enable accurate self-localization on floor-plan images. EyeLoc
addresses several challenges which include developing ubiquitous
smartphone vision system, efficient vision clue extraction and
robust measurement error mitigation. We implement EyeLoc in
Android and evaluate its performance in emulated environment
and four large shopping malls. The 90-percentile errors of
localization and heading direction are 4m and 20◦ in the two
large shopping malls.

Index Terms—Indoor localization, smartphone vision system,
inertial measurement, text detection/recognition.

I. INTRODUCTION

Nowadays, the physical layout of many large shopping
malls are becoming more and more complex [17]. As there
are many location based activities (e.g., shopping, eating,
watching movie) in large shopping malls, indoor localization
is becoming an important service for people. Although outdoor
localization (i.e., GPS) has been put in practice for many years,
there is still no practical deployed indoor localization systems.

Many indoor localization systems rely on pre-collected
information (e.g., Wi-Fi signals [9] [22] [6] [16] [21], lamp po-
sition [5] [24] [8], indoor environment images [10], magnetic
field fingerprints [13] [19]), called site survey, to construct
a localizable map. In large shopping malls, the site survey
usually incurs extensive bootstrap overhead so that hinders
existing approaches from being used. Even when site survey
can be accomplished, the information usually needs to be
timely updated and calibrated which further limits the applica-
bility. Moreover, some indoor localization systems [16] require
custom hardwares, which are not supported in commodity
smartphones.

Therefore, the question is can we setup a plug-and-play
indoor localization system in large shopping malls nowadays?

We notice a possible way by leveraging the widely available
floor-plan images, which can be obtained from indoor map
providers (e.g., Google Maps, Gaode Maps, Baidu Maps, etc.).
Those floor-plan images contain the positions of many shops,
called POIs (Point of Interest). These POIs are often used as
visual hints to help users manually localize themselves, called
self-localization. Although there is no overhead of site survey,
self-localization usually requires users have good ability of
geometric sense and space transformation. To reduce users’
mental work, we imagine that can users automatically obtain
their positions on floor-plan image from their smartphones as
traditional outdoor localization system such as Google Maps
and Baidu Maps? In this sense, it is possible to achieve a plug-
and-play indoor localization system by bridging this gap.

In this paper, we propose EyeLoc, a step towards plug-
and-play indoor localization in large shopping malls. The
key idea of EyeLoc is to imitate human self-localization
with smartphone vision. After obtaining a floor-plan image,
EyeLoc uses scene text detection/recognition techniques to
extract a set of POIs. The recognized texts are used to identify
different POIs. Moreover, the corresponding text bounding
boxes provide the approximate positions of the POIs in the
floor-plan coordinate system (called floor-plan space). Then,
a user holds his/her smartphone and turns a 360◦ circle. The
smartphone automatically shoots a series of images (called
view image), which contain the surrounding POI signs. For
those observed POIs, EyeLoc extracts their texts and geometric
constraints in vision space, which are further used to match
the user’s position in floor-plan space.

EyeLoc addresses three challenges. First, there is a big
difference between human vision system and smartphone
vision system. We develop an accurate and ubiquitous monoc-
ular vision system which is available on most smartphones.
Then, we construct the constant geometric constraints of 3
observed POIs to enable position matching between floor-plan
space and vision space. Second, text detection and recogni-
tion are usually time-consuming. To reduce the processing
time of POI extraction, an outlier image filtering method
and a sparse image processing method are designed. Third,
the measurement errors from motion sensors and floor-plan
images may incur inaccurate position matching, for which
we design an error-resilient method. We implement EyeLoc
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(a) Indoor Floor-plan Image (b) Circle Shoot (c) Location & Heading

Fig. 1: Illustration of an example of the EyeLoc innovation.

on Android smartphones and evaluate its performance in an
office environment and two large shopping malls (7,500m2 and
10,000m2). The evaluation results show that the 90-percentile
error of localization and heading direction can achieve 4m and
20◦. The contributions of this paper are as follows.

• We propose EyeLoc, a smartphone vision enabled plug-
and-play indoor localization in large shopping malls. No
site survey or periodical system calibration is required.

• We develop a ubiquitous smartphone vision system and
corresponding geometric localization model. To guaran-
tee localization accuracy and processing efficiency, we
propose the countermeasures to address several practical
challenges.

• We implement EyeLoc on Android smartphones and
evaluate its performance in an office environment and
two large shopping malls. The evaluation results show
that EyeLoc is effective on both localization accuracy
and processing efficiency.

The rest of this paper is organized as follows. Section II
shows the overview of EyeLoc. Section III illustrates the
detailed design of EyeLoc. Section IV and Section V show the
details of EyeLoc implementation and evaluation, respectively.
Section VI introduces the related work. Finally, we conclude
our work in Section VII.

II. EYELOC OVERVIEW

GPS is a plug-and-play localization system in outdoor
spaces and has been widely used by smartphone applications.
In large shopping malls, EyeLoc has two goals as GPS does.

• plug-and-play. EyeLoc should not assume any extra boot-
strap cost (e.g., site survey, system calibration) in large
shopping malls. Moreover, EyeLoc should not require
users to own any prior knowledge and follow complex
smartphone operations.

• efficient and robust. Facing computation intensive image
processing and various measurement errors from motion
sensors and floor-plan images, EyeLoc should be able to
accurately localize a user with short processing time.

To meet the first goal, EyeLoc is inspired by two obser-
vations. First, the indoor floor-plan images of shopping malls
(e.g., shown in Figure 1(a)) can be easily fetched from indoor
map providers through Android and IOS APIs. The other
observation is that people usually turn around to observe the

surrounding POIs and localize themselves. After fetching the
floor-plan images, Eyeloc enables the smartphone to imitate
human self-localization with on-board motion sensors and
technologies of text detection and recognition. Bootstrap cost
and user training are no longer in need.

Fig. 1 provides an example of how EyeLoc works. Alice
is in a large shopping mall and she wants to go to H&M.
She loses her direction and does not know where she is.
As Alice opens Eyeloc, the corresponding floor-plan image
is automatically fetched. Then she holds her smartphone and
turns a 360◦ circle. EyeLoc takes a set of view images during
Alice’s turning. This operation is called circle shoot. From
view images, Eyeloc exploits the motion sensors and tech-
niques of text detection and recognition to extract geometric
information of several observed POIs (e.g., GAP, UGG, MISS
SIXTY, Calvin Klein). Meanwhile, EyeLoc uses techniques
of text detection and recognition to find the positions of
corresponding POIs on the floor-plan image. Finally, Eyeloc
projects Alice’s position and heading direction on floor-plan
image as shown in Fig. 1(c).

As Fig. 1 illustrates, EyeLoc depends on techniques of text
detection and recognition to extract geometric information of
the observed POIs from a set of view images. Text detection
and recognition from color images have been widely studied
in the past decade, especially with deep learning models like
convolutional neural networks. A few open-source models
(e.g., OpenCV [1] , Tesseract [15]) are also available on smart-
phones. On the other hand, smartphones can utilize the cloud
service from companies like Google, Baidu, etc. However,
none of the two approaches can achieve real-time execution
due to computation overhead on images or extra network
delay. This contradiction obliges us to design an efficient
method to accurately extract the geometric information of
the observed POIs, but shorten the processing latency. We
have two intuitions for the method design. First, since the
extracted POIs with error geometric information are useless
even harmful for localization, we should not deal with those
view images of low quality. Second, we observe that the view
images are usually redundant for extracting the geometric
information of an observed POI. Hopefully, we can only
select a subset of those view images which contains equivalent
geometric information of the observed shops as the whole set
does for further processing.
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Fig. 2: Illustration of the system architecture of EyeLoc.

On the other hand, various measurement errors of the
extracted information are invertible and may lead to inaccurate
localization. For example, as shown in Fig. 1(c), the text
bounding boxes of the four observed shops may be not exactly
align to that of the corresponding shop signs appeared in
vision space. To mitigate potential errors and achieve robust
localization, our observation is that the spatial POI distribution
is usually dense in large shopping malls, which means multiple
POIs are available. Hopefully, we can use the the redundant
information to refine the estimated user’s position.

In comparison with human binocular vision system, EyeLoc
develops a monocular vision system, which is accurate and
ubiquitous for smartphones. EyeLoc enables user’s position
matching between vision space and floor-plan space with
constant geometric constraints of 3 observed POIs. The system
architecture of Eyeloc is shown in Figure 2, including three
parts as follows.

Raw Data Collection. The first part is to fetch floor-plan
images from indoor map providers and collect raw information
of view images from circle shoot. According to the coarse
GPS localization, Eyeloc queries indoor map providers to
obtain floor-plane images. During the circle shoot, Eyeloc
uses camera and motion sensors (e.g., compass, gyroscope,
accelerometer) to continuously capture view images and corre-
sponding motion attributes (e.g., camera facing direction, angle
velocity).

POI Extraction. Taking the information of view images and
floor-plan images as input, the second part extracts geometric
information of several observed POIs in both vision space
and floor-plan space. Because text detection and recognition
are time-consuming, we need to extract enough geometric
information while keeping the number of processed image as
small as possible. Eyeloc filters out some view images which
are blurred or have error motion attributes. Then EyeLoc
develops a sparse image processing method to extract geo-
metric information of all observed POIs from the rest of view
images and keeps the number of processed image small. After
extracting all POIs on floor-plan image, EyeLoc obtains the
positions of the observed POIs in floor-plan space by matching
their names.

Position Matching. With the geometric information of the
observed POIs, EyeLoc now projects the user’s position and
heading direction to floor-plan space. The redundancy of the
observed POIs is explored to mitigate unavoidable errors of

geometric information in vision space and positions in floor-
plan space. The observed POIs are grouped into tuples. Each
POI tuple can be used to calculate the user’s position and
heading direction with geometric constraints. The localization
error of different tuples are diverse with the same measurement
errors. EyeLoc combines several inferred positions and the
corresponding errors to vote the final user’s position and
heading direction.

III. EYELOC DESIGN

To relieve human from self-localization, EyeLoc achieves
plug-and-play localization in large shopping malls. Due to the
huge difference between human vision system and smartphone
vision system, we first establish the smartphone vision system
and illustrate the fundamental geometric localization model in
EyeLoc. Then we show the design details of the three function
components of EyeLoc as shown in Figure 2.

A. Smartphone Vision System

We intend to define a ubiquitous smartphone vision system
to fetch the geometric relationship between the smartphone
and an observed POI. Human eyes form a binocular vision
system, which enables humans to estimate the distance of
an observed POI and the direction of the sightline between
the POI and human eyes. However, nowadays only a few
smartphones (e.g., iPhone X, Huawei P20 Pro) have dual
or triple cameras and parameters of camera calibration are
not explicitly known. Moreover, humans have practiced a lot
since they were children. So the question is can we estimate
the distance and the direction as geometric descriptors of an
observed object through the monocular view images of circle
shoot?

(a) (b) (c) (d)

Fig. 3: An example of the sightline change during circle shoot
in physical space.
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Fig. 5: Illustration of distance error in terms of the error of θ2
and k. (a) and (b) show the distance error under different θ2
and k when other parameters are fixed.

To enable distance estimation with monocular vision, one
way is to exploit the camera motion of circle shoot to imitate
a binocular vision system. As shown in Fig. 4, the distance
between the POI P and the user H is indicated as d. The
distance between H and the optical center of smartphone
camera lens O1 is r. C1 is the center of image plane while
F is the position of P on the image. H1, C1 and O1 are
approximately kept on the same line all the time during
circle shoot. The focal length of the smartphone camera
lens f is unknown for most smartphones. θ1 indicates the
intersection angle between line HO1 and the sightline HP .
Since 4F1O1C1 is similar to 4PO1K1, we have the follow
equation:

F1C1

d sin θ1
=

f

d cos θ1 − r
(1)

where F1C1 indicates the pixel offset between F1 and C1.
Combining the same equation under another angle θ2 (θ1 6=
θ2), we can derive d as follow:

d = r
sin θ1 − k sin θ2

cos θ2 sin θ1 − k cos θ1 sin θ2
(2)

where k equals to the ratio between F1C1 and F2C2. If θ1, θ2, k
and r are known, the distance d can be calculated. As the direction
of HP , HO1 and HO2 can be obtained by motion sensors, θ1 and
θ2 can be calculated. For an observed POI, we recognize the center
of its text bounding box as F1 and F2 on a view image so that F1C1,
F2C2 and k can be calculated. r can be roughly estimated according
to human arm length. In this way, EyeLoc can estimate the distance
of a POI in large shopping malls without any prior knowledge of
camera parameters.

Since the errors of θ and k estimation are inevitable, we conduct
error analysis. We assume r is 0.5m. Given θ1, θ2 and k are 24◦,

Algorithm 1 Geometric Constraints Extraction Algorithm
Input: 3 POIs sorted according to their appearance order; the direc-

tions of the corresponding EyeLoc sightline δ1, δ2, δ3 in vision
space.

Output: rotation directions d12, d23, d31, intersection angles θ12,
θ23 and θ31.

1: vector of POI1 EyeLoc sightline v1 = (sin δ1, cos δ1).
2: vector of POI2 EyeLoc sightline v2 = (sin δ2, cos δ2).
3: vector of POI3 EyeLoc sightline v3 = (sin δ3, cos δ3).
4: d12 = v1 × v2, d23 = v2 × v3 and d31 = v3 × v1.
5: θ12 = (δ2−δ1) mod 360◦; θ23 = (δ3−δ2) mod 360◦; θ31 =

(δ1 − δ3) mod 360◦

12◦ and 2.11, d will be 5.48m. We change one parameter (e.g., θ1,
θ2, k) to calculate the distance error when other parameters are fixed.
The results are shown in Fig. 5. Surprisingly, given the distance as
5.48m, the distance error is huge when θ1, θ2 and k have a small
bias. The distance error is getting to 1.97m, when θ1 decreases from
24◦ to 23.9◦. Similarly, when θ2 increases from 12◦ to 12.1◦, the
distance error increases from 0m to 2.68m. 0.1◦ error is common
for the facing direction measurement with motion sensors. The same
trend happens on k. When k increases from 2.11 to 2.16, the distance
error increases from 0m to 3.77m. Due to the limitation of image
resolution, given F1C1 is as large as 1000 pixels, 0.05 error of k
means about no more than 50 pixels error of F2C2 which is hard to
achieve due to the relatively large estimation error of text bounding
box. When θ1 increases or θ2 and k decreases a little, the situation
is getting even worse. Hence, due to the limitation of motion sensor
precision and image resolution, the potential huge error makes the
distance estimation unavailable in practice. Overall, in smartphone
vision system, for a POI, we only use the direction of its EyeLoc
sightline as the geometric descriptor for later localization.

B. Geometric Localization Model
After we obtain the direction of the sightlines of several POIs,

the next question is how to construct constant geometric constraints,
then figure out the user’s position and heading direction on floor-plan
image.

1) Constant Geometric Constraints: Taking Fig. 6 as an
example, H is the user’s position. Fig. 6(a) represents the vision
space. The user observes 3 POIs (e.g., POI1 Miss Sixty, POI2 UGG
and POI3 GAP) in their appearance oder. Nv indicates the north
direction in vision space. Fig. 6(b) represents the floor-plan space.
Circle 1, 2 and 3 in Fig. 6(b) represent the corresponding center of
text bounding boxes of the 3 observed POIs. Given the coordinate
system X-Y of the floor-plan image, (x1, y1), (x2, y2) and (x3, y3)
are the corresponding coordinate of 1, 2 and 3. Nf is the north
direction in floor-plan space which aligns with Y axis. In vision
space, the directions of EyeLoc sightline δ1, δ2 and δ3 can be
estimated. However, since Nv and Nf may be not aligned with each
other, we cannot directly determine the coordinate of H with these
directions in floor-plan space.

Two constant geometric constraints between the vision space and
the floor-plan space are important for EyeLoc. The first one is that
the rotation direction of the circle shoot is constant. The 3 POIs
will appear in the same order along the rotation direction in vision
space and floor-plan space (e.g., POI1 →POI2 →POI3 in Fig. 6(a)
and 1 → 2 → 3 Fig. 6(b)). We use d12, d23 and d31 to indicate
rotation directions between each pair of adjacent POIs. The second
constant geometric constraint is, 6 POI1HPOI2, 6 POI2HPOI3 and
6 POI3HPOI1 in Fig. 6(a) are equal to 6 1H2, 6 2H3 and 6 3H1 in
Fig. 6(b) respectively. To simplify our notations, the 3 intersection
angles are indicated as θ12, θ23 and θ31 in both spaces. The rotation
directions and the intersection angles between any two POIs serve as
two constant geometric constraints between the vision space and the
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Algorithm 2 Arc Calculation Algorithm
Input: 2 POIs, POI1 and POI2, sorted according to their appearance

order; the rotation direction d12; the angle θ12 between the
directions of the corresponding EyeLoc sightlines in vision space;
the corresponding coordinates (x1, y1) and (x2, y2) in floor-plan
space.

Output: The coordinate of circle center (xo, yo); the length of circle
radius R.

1: pixel distance and slope of the chord ~12 as d12 =√
(x1 − x2)2 + (y1 − y2)2 and k = x1−x2

y1−y2
.

2: if θ12 equals to 180◦ then
3: H is on the segment between POI1 and POI2. (xo, yo) and R

are set as NULL.
4: else if θ12 > 180◦ then
5: θ12 = 360◦ − θ12.
6: else if θ12 equals to 90◦. then
7: (xo, yo) = (x1+x2

2
, y1+y2

2
);R = d12/2

8: else
9: R = d12

2 sin θ12
; two possible coordinates (xo1, yo1) and

(xo2, yo2) of circle center are calculated by Equ. 6 and Equ. 6.
10: set (xo, yo) as (xo1, yo1)
11: calculate the rotation direction do12 = vector(xo − x1, yo −

y1)× vector(xo − x2, yo − y2)
12: if d12 · do12 > 0⊕ θ12 < 90◦. then
13: set (xo, yo) as (xo2, yo2).
14: end if
15: end if

floor-plan space. Alg. 1 exhibits the details to determine the d12, d23,
d31, θ12, θ23 and θ31 given 3 POIs and their corresponding directions
of EyeLoc sightlines.

2) Localization Model: Given three POI coordinates ((x1, y1),
(x2, y2), (x3, y3)), rotation directions (d12, d23, d31) and intersection
angles (θ12, θ23, θ31), we derive a method to calculate the coordinate
(xH , yH) of the user’s position H in the floor-plan space. As shown
in Fig. 6(c), we have the coordinates of two POIs (e.g., 1, 2), the
rotation direction d12 and the intersection angle θ12. If θ12 is 180◦, H
is on the segment between 1 and 2. Otherwise, the possible position
of H is on an arc which takes the segment ~12 as the chord and θ12 as
the inscribed angle. The pixel distance between 1 and 2 is l12 which
equals to

√
(x1 − x2)2 + (y1 − y2)2. M is the middle point of the

chord ~12 and its coordinate (xM , yM ) equals to (x1+x2
2

, y1+y2
2

).
O12 is the center of the circle and R is the length of its radius. We
use (xo, yo) to indicate the coordinate of O12. If θ12 is 90◦, O12

and M will share the same coordinate. Otherwise, since 1 and 2 are
on the circle and the chord ~12 is perpendicular to MO12, we have

following equation:

x1 − x2

y1 − y2
= − yo − yM

xo − xM
= k (3)

where k is the slope of the chord ~12. Moreover, the central angle
6 1O122 is twice the corresponding inscribed angle which equals to
180◦ − θ12 and 6 1O12M is half the central angle 6 1O122. Hence,
6 1O12M = 180◦ − θ12 and R = d12

2 sin θ12
. As for the length of

O12M , we have the follow equation:√
(xo − xM )2 + (yo − yM )2 = − l12

2 tan θ12
(4)

Combining Equ. 3 and Equ. 4, we can obtain (xo, yo) as follows:

xo = xM ±
l12

2 tan θ12

√
1 + k2

(5)

yo = yM ∓
kl12

2 tan θ12

√
1 + k2

(6)

Besides O12, we obtain another false center of circle O′12 which is
symmetric with O12 by taking ~12 as mirror. To filter out the outlier
O′12, we further exploit the information of the rotation direction d12

and acute/obtuse angle θ12. If θ12 is acute angle, O12 is on the same
side with H regarding segment ~12. Otherwise, O12 is on the opposite
side with H . In this way, we can identify the unique coordinate of
O12. Alg. 2 summarizes the detailed calculation of O12 and R. Now,
we know H is on an arc determined by O12 and R. Similarly, we can
calculate another arc where H is on with POI2, POI3 and θ23. We
further calculate the intersections of these two arcs. One intersection
is POI2, the other is the position of H .

In the localization model, we should notice an unexpected situation
which may incur localization bias. The situation is that when H ,
POI1, POI2 and POI3 are on the same circle, we cannot localize
H through the geometric constraints of the 3 POIs. This situation
rarely happens in practice as shown in Section V. Moreover, it is
possible that we can observe more than 3 POIs at large shopping
malls. If the situation has happened, EyeLoc will popup a message to
remind the user that he/she needs to walk several steps and relocalize
himself/herself.

When the coordinate of H is known, we can calculate the
directions of HPOI1, HPOI2 and HPOI3 in floor-plan space. Then,
with δ1, δ2 and δ3, we can calculate the angle offset ∆N between the
vision north Nv and floor-plan north Nf . Given any user’s heading
direction (e.g., camera facing direction) in vision space, we can infer
his/her heading direction in floor-plan space. Overall, EyeLoc can
calculate a user’s position and heading direction by observing no
less than 3 POIs. In the next 3 subsections, we will address several
challenges in practice.
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C. Raw Data Collection

During circle shoot, EyeLoc periodically takes view images with
camera and records the readings of motion sensors to infer the camera
facing direction of each view image in vision space. Moreover,
EyeLoc fetches the floor-plan images from indoor map provider.

1) View Image: We have two system parameters for view image
shooting. One is the resolution of view image, indicated as Ir . The
higher the Ir is, the text of more POIs can be accurately detected
and recognized. However, the processing time also increases when
Ir becomes high. Hence, EyeLoc fixes Ir as 1536p during circle
shoot but adaptively chooses a small resolution Ip for later POI
text detection and recognition. The other parameter is the shooting
frequency fs. The interval between two adjacent view images is 1/fs.
The high fs ensures all surrounding POIs can be recorded when the
rotation speed of a user is fast. Too many redundant view images
also have negative influence on processing time. EyeLoc selects a
relatively high fs to guarantee the reliability and further improves
the processing efficiency through view image filtering and selection.

2) Motions Sensor Readings: In Section III-B, we have men-
tioned that the EyeLoc direction of each view image is measured
through the estimation of camera facing direction. According to the
common gesture of circle shoot shown in Fig. 3(a), as Fig. 7 shown,
δ is the angle between earth north Ne (i.e., Nv in EyeLoc vision
system) and the projected direction Z′ of smartphone Z axis. We
use the motion sensors (e.g., accelerometer, gyroscope and compass)
to capture the camera facing direction. EyeLoc continuously samples
the readings of the motion sensors. Basically, the acceleration along
3 smartphone axes (e.g., X , Y and Z) can determine the direction
of gravity. Compass can further determine the direction of Ne in
smartphone coordinate system. As a result, the direction of Z can be
calculated in earth coordinate system. Then, the direction of Z′ and δ
are calculated correspondingly. Furthermore, EyeLoc adopts several
methods [23] [11] to calibrate the camera facing direction of each
view image by removing potential magnetic interference and bursty
noise.

3) Floor-plan Image: . By utilizing the API provided by indoor
map provider, given the coarse GPS readings in a shopping mall,
EyeLoc can fetch the floor-plan images of all floors in the shopping
mall. Each floor-plan image contains the skeleton and name of all
POIs on that floor.

Overall, the raw data collection module outputs a series of view
images, corresponding EyeLoc sightline directions and floor-plan
images. However, in raw data, the redundancy and measurement
error incur computation inefficiency and localization error. Next, we
introduce the methods to improve the efficiency and robustness.

D. POI Extraction

EyeLoc fetches the names and positions of all POIs in a shopping
mall from floor-plan images. The problem is to efficiently extract all

available POIs and corresponding geometric information from a set
of view images for later position matching.

1) View Image Outlier Filtering: If a view image is blurred,
we cannot detect any text at all. We treat the blurred view images
as outlier that should be filtered out. EyeLoc adopts Laplacian-based
operator, which is a widely used function for focus measure, to define
the degree of image blur. We randomly selected 1692 view images
from the whole data set shot in two large shopping malls (Section V).
We guarantee there are at least one POI sign in each of these view
images. In Fig. 9, the black curve shows the Laplacian variance
values of these images are distributed from 0 to 400. The larger
the variance is, the less the image blur is, as shown the comparison
between the example view images with variance in the range [0,20]
and [300,320]. In a view image, if the length of any recognized text
string is more than 2, it is text detectable. We further select 15 view
images from each level of image blur to evaluate the the probability of
text detection under different level of image blur. The red curve shows
that the probability of text detection is higher than 80% when the
Laplacian variance is larger than 80. Hopefully, we should filter out
those view images whose Laplacian variance is less than 80 because
it is hard to detect any text clues from it. Thus, we define a threshold
∆Lap (e.g., approximate 80) to determine whether a view image is
blurred or not.

Moreover, the smartphone vibration around Y axis and Z axis
can influence the position of a POI on view images. As a result, the
estimation error of EyeLoc sightline may increase. The gyroscope
outputs the angle velocity around 3 axes as ωx, ωy and ωz , then
the angle velocity is ω =

√
ω2
x + ω2

y + ω2
z . On the other hand, we

can also calculate the angle velocity ω′ given the Z′ direction of
two adjacent view images and the corresponding time interval. We
conduct a circle shoot by setting fs as 2Hz. During circle shoot, we
manually vibrate the smartphone as a common user does when the
picture ID is from 15 to 18 and from 26 to 30. As shown in Fig. 8,
the angle velocity difference between ω and ω′ is close to zero as
usual. However, the smartphone vibration will obviously increase the
difference. This observation indicates different motion sensors have
different sensitivity for the vibration. Hence, EyeLoc sets a threshold
∆ω and filters those view images when the angle velocity difference
is larger than ∆ω .

2) Text Filtering and Matching: In large shopping malls, text
may appear at anywhere. It is possible to detect multiple text strings
from a view image, especially the name of a POI may appear at
multiple places. EyeLoc filters out the irrelevant and duplicate text
bounding boxes through following steps. First, given the minimum
and maximum length of POI names extracted from floor-plan images,
EyeLoc filters out the illegal text strings. Second, we group the rest
of text strings. Two text strings belong to the same group when
the difference between them is smaller than a threshold ∆t. The
difference between two text string is defined as the ratio between
their Levenshtein Distanceand the maximum string length. Given the
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Fig. 10: Feature point matching in two different view
images of the same POI.
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list of POI names extracted from floor-plan images, EyeLoc further
removes those invalid groups whose text strings are not on the list
(i.e., the similarity is smaller than ∆t in comparison with any POI
name). Finally, in each valid group, EyeLoc combines the coordinates
of all text bounding boxes to calculate the average value as the unique
text bounding box position of the observed POI on the view image.
In this way, EyeLoc identifies the available POIs and corresponding
position of text bounding boxes on a view image.

3) Sparse Image Processing: After filtering the outliers of view
images, for all observed POI, we need to exactly find the view images
(e.g, Fig. 3(c)) where the corresponding text bounding boxes appear
in the middle of. The intuitive approach is to process all view images,
but incurs heavy networking and computation burden as the sampling
frequency fs is set high. Even worse, the desired view image may
not be captured or blurred. Instead of processing every view image
to extract the geometric information of all potential POIs, EyeLoc
develops a sparse image processing approach to achieve the same
goal. The key idea is after the position of a text bounding box is
known from a view image (e.g., Fig. 3(b)), we can enable EyeLoc
sightline estimation of a POI with one more view image which
contains the same POI (e.g., Fig. 3(d)) by feature point matching.
As shown in Fig. 10, given two view images I1 and I2, the text
bounding box of I1 is extracted and it is d1 pixel from the middle
line. Then, in I2, we use ORB algorithm to extract the same feature
points which falls into the text bounding box of I1. Given a feature
point, its coordinates on I1 and I2 are (x1, y1) and (x2, y2). The
pixel distance of the feature point is

√
(x1 − x2)2 + (y1 − y2)2.

The average pixel distance of all feature points is indicated as lf .
Due to the approximate constant ratio between pixel distance and
central angle, given their direction as δ1 and δ2, we can calculate the
direction δ of the POI EyeLoc sightline as following:

δ = δ1 +
d1

lf
(δ2 − δ1) (7)

When we recognize the text bounding box of a POI from a view
image, we use its adjacent images which probably contain the same
POI to calculate the direction of POI EyeLoc sightline with Equ. 7.

To extract the geometric information of all observed POIs, the
problem becomes to quickly find a view image of each observed POI
from all view images. Given n view images {I1, I2, ..., In}, we set a
step length ∆s and view images {I∆s , I2∆s , ..., Ik∆s} (k = b n

∆s
c)

are selected for processing. Hopefully, if the minimum number of
view images of a POI is larger than ∆s, EyeLoc cannot miss the view
image of any observed POI. However, due to the possible fail of text
recognition, we may miss some POIs so that no more than three POIs
are extracted. In this case, EyeLoc will exponentially reduce ∆s and
reprocess the new view images until at least 3 POIs are extracted or all
view images are processed. Overall, we can fetch enough available
POIs and corresponding directions of EyeLoc sightline as soon as
possible for later location matching. Next, we remove the potential
estimation errors to achieve accurate location matching.

E. Position Matching

According to the localization model in Section III-B, we can
localize a user’s position with three observed POIs, called localization
tuple. Fig. 11 shows the measured POI coordinates of a localization
tuple (e.g., POI1, POI2, POI3) and the calculated user’s position H .
The corresponding measured intersection angle θ12, θ23 and θ31 are
120◦. The POI text bounding boxes in floor-plan image may not
exactly align with that in physical space. Due to the POI coordinate
errors, we assume the true POI positions may appear on a circle
around it and the radius is Re. As shown in Fig. 11(a), given the POI1
uncertainty Re as 3 pixels, we fix other measured results, the possible
true positions shown as the green marks are calculated. Moreover, due
to the possible errors from motion sensor and image processing, θ12

may inaccurately measured in comparison with the true intersection
angle θ′12 as shown in Fig. 11(b). The same situation may happen for
θ23 and θ31. We assume the error of θ12, θ23 and θ31 is in the range
of [−∆θ,∆θ]. For θ12, Fig. 11(b) shows the possible true positions
shown as the green marks when ∆θ is 10 ◦. Regarding to the errors
of POI1 and θ12, the maximum localization errors are indicated as
de. The ratio between de and Re or ∆θ is further defined as the error
sensitivity of a POI or an intersection angle. Given a localization tuple
u, we define its localization error sensitivity les(u) as the sum of
the error sensitivity of all three POIs and three intersection angles.

When k (k ≥ 3) POIs are extracted, we have total m = k(k −
1)(k−2)/6 localization tuples indicated as {u1, u2, ..., um}. For the
ith tuple ui, its localization result and error sensitivity are indicated
as hi and les(ui). The larger the les(ui) is, the more accurate the
hi is. Hence, EyeLoc sets the weight wi of localization result hi as
1/les(ui). Then, the final match location h are calculated as follows:

h =

∑m
i=1 wihi∑m
i=1 wi

(8)

With h and k extracted POIs, EyeLoc can further calculate user’s
heading direction according to the method in Section III-B. Overall,
EyeLoc outputs the user’s location and real-time heading directions
in floor-plan space.

IV. IMPLEMENTATION

We implement EyeLoc as a mobile application in Android 7.0.
Fig. 12 demonstrates the user interface (UI) of EyeLoc application
when we conduct experiments in the office environment (Section V).
As shown in Fig. 12(a), after a user opens EyeLoc application, the
surrounding view appears on the smartphone screen. Then, the user
clicks “AUTOTAKEPHOTO” button to trigger circle shoot. After the
user finishes circle shoot, he/she clicks “STOPTAKEPHOT” button.
Later on, EyeLoc exhibits the user’s position (e.g., black spot) and
heading direction (e.g., orange arrow) on floor-plan image as shown in
Fig. 12(b). We discuss several system details and settings as follows.
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Fig. 12: The EyeLoc UI.
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A. Scene Text Detection and Recognition

Scene text detection and recognition techniques serve as a funda-
mental role in EyeLoc. We compare several existing techniques which
can work on Android smartphone in terms of recognition accuracy
and processing time. Here, we adopt the same method in Section III-D
to judge the similarity between two text string. ∆t is set as 50%. We
randomly select 100 images which are shot by smartphone in two
large shopping malls. Some of them are shot at daytime and the
others are shot at night. Each image contains one shop sign which is
manually labeled as the ground truth.

1) Local processing v.s. Cloud processing: According to the
different processing platform, there are two kinds of approaches
for text detection and recognition. One is to locally process image
on smartphone. The other is on cloud. The approaches of local
processing include OpenCV [1] and Tesseract [15]. We choose Baidu
Cloud as a typical cloud processing approach. We use LTE network,
which is available in most shopping malls nowadays, to connect the
smartphone with cloud server. Given the data set of 100 images, the
recognition accuracy and processing time are shown in Fig. 13(a).
We can see that the text recognition accuracy of Baidu Cloud is 66%
which is much higher than 12% of Tesseract and 2% of OpenCV. The
text recognition accuracy of Tesseract and OpenCV is surprisingly
low since the text classifiers and extreme region extraction are hard
to adapt the complex lighting condition and text format of the POI
signs. The average processing time of Baidu Cloud is 2s which is a
little higher than that of OpenCV, but much smaller than Tesseract.
Due to the superior recognition accuracy and low processing time,
we choose cloud processing instead of local processing.

2) The influence of image resolution: We further explore the
performance of Baidu Cloud by using different image resolution.
We vary the resolution of 100 images from 180p to 1538p. The
performance is shown in Fig. 13(b). We can see that both text
recognition accuracy and processing time increase with the increasing
of image resolution. When the image resolution is 720p, the text
recognition accuracy and average processing time are 54% and 0.74s.
In comparison, the text recognition accuracy and average processing
time increase to 72% and 1.89s when the image resolution increases
to 1536p. EyeLoc choose Ip to keep the text recognition accuracy is
higher than 60%. Meanwhile, EyeLoc minimizes the expected time
for successfully recognizing a POI which is the ratio between the
average processing time and the recognition accuracy. Hence, we

set Ip as 1080p. For outlier view image filtering, according to the
observation of Fig. 9 and 8, we set ∆Lap and ∆ω as 80 and 10◦/s.

B. Circle Shoot Operation
We set fs as 2Hz, namely EyeLoc shoots 2 view images per

second. Moreover, we set ∆s as 3. Considering the observed 20%
blurred view images (Fig. 9) and 37% text recognition failure of
1080p view image (Fig. 13(b)) in practice, according to our empirical
experience, it is better to obtain at least 6 view images of a POI (e.g.,
3s) to ensure the reliability and efficiency of POI extraction. That
means if there are 5 POIs around a user, the circle shoot will take
15s at least.

C. Floor-plan Images
EyeLoc generates high resolution indoor floor-plan images from

Gaode Maps. Since the font of POI texts on floor-plan images is
regular print format, the text recognition accuracy is close to 100%.
The resolution of floor-plan image is set to 2560×1440. For error
sensitivity estimation, we empirically set ∆θ and Re as 10◦ and 20
pixels. The threshold of text string similarity ∆t is set as 50%.

V. EVALUATION

We evaluate EyeLoc with different smartphones (e.g., MI 5 and
Huawei Mate 7) in office environment and two large shopping malls.
The office environment is a 7m×9m office room as shown in Fig. 12.
We print 6 shop signs such as NIKE on A4 size paper, then hang
them on the wall or curtain in clockwise order. The area of each floor
in two large shopping malls are 7,500 m2 and 10,000 m2 respectively.
We invited two volunteers (Male, 20-30 years old) to complete all
the experiments both in daytime and night. User 1 uses MI 5, User 2
uses Huawei Mate 7. The two users exhibit different habits as User
1 turns faster than User 2.
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Fig. 14: The reliability of EyeLoc.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Office Mall

Lo
ca

liz
at

io
n 

E
rr

or
 (m

)

3 POIs

4 POIs

5 POIs

(a) The influence of the number of
observed POIs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

MI 5 Huawei Mate 7

Lo
ca

liz
at

io
n 

E
rr

or
 (m

)

(b) The localization error measured
by different smartphones

Fig. 15: Different influencing factors.

In office environment, we uniformly split the office to 18 areas.
Users stand at the center of each area. The ground truth is obtained
through laser rangefinder. In two large shopping malls, we mainly
select the positions near entrance, elevator and bathroom where users
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Fig. 17: Two experiment positions in two shopping malls.

have high localization demands. We evaluate 11 positions. For each
position, we also use laser rangefinder to measure its ground truth.
The minimum and maximum distances between the user and a POI
are 2.26m and 29.2m.

A. The Accuracy of Localization and Heading Direction Es-
timation

First of all, we discuss the reliability of EyeLoc. As shown in
Fig. 14(a) and Fig. 14(b), in the two large shopping malls, the
median errors of localization and heading direction are 2.6m and
10.5◦. Moreover, the 90-percentile errors of localization and facing
direction increase to 4m and 20◦. In the office environment, the 90-
percentile errors of localization and facing direction are 1.1m and 8◦

which are much better than that in large shopping malls. There are
two reasons. First, in office environment, we can precisely measure
the POI coordinates on the floor-plan images. However, the POI
coordinates suffer larger error due to the position mismatch between
the text bounding boxes and the observed POI signs on the floor-
plan images obtained from indoor map providers. Moreover, in office
environment, we have only one POI in a view image in most cases.
However, in large shopping malls, it is possible that several signs
of the same POI may appear in a view image. It will incur error
about the sightline estimation. EyeLoc fully considers these errors
and designs countermeasures in both POI extraction and position
matching. Given the area as large as 7,500m2 and 10,000m2, 4m and
20◦ is still relatively accurate for the most location based services.

1) The influence of the number of observed POIs: In
position matching, EyeLoc utilizes the POI redundancy to mitigate
the measurement errors of POI coordinates and EyeLoc sightline.
Fig. 15(a) shows the relationship between the number of observed
POIs and the localization error. We can see the average localization
error decreases as the number of observed POIs increases. Specif-
ically, the localization error decreases by 33.7%/34.9% when the
number of observed POIs increases from 3 to 4/5 in large shopping
malls respectively. This indicates the error mitigation approaches are
effective for improving the localization accuracy. Moreover, 5 or
more POIs cannot provides more useful information for improving
the localization accuracy rather than 4 POIs.

2) The influence of POI distribution: We evaluate the influ-
ence of POI distribution on the localization error. Fig. 16 shows the

localization error distribution of the 18 experiment positions given the
positions of 6 POIs. The darker the color is, the higher the localization
error is. We can see the localization error is getting higher when the
distance between user’s position and POIs is large. Moreover, the top
left area is higher than its surrounding area, that is because it is close
to the circle formed by several POIs. According to Section III-B,
when the user’s position and POIs tends to be on the same circle, the
accurate localization will be hard to achieve. Moreover, we give two
experiment positions in shopping mall 1 (Fig. 17(a)) and shopping
mall 2 (Fig. 17(b)). The white areas are roads and yellow blocks are
shops. The green points are the results of EyeLoc localization. The
red points are the ground truths. The localization error of the position
in shopping mall 1 is 1.56m, but that of the other one is 3.64m.
From the POI distribution on the floor-plan images, we can see the
large error in Fig. 17(b) is because the true position, GLORIA, AFU
and MOFAN tend to on the same circle. In contrast, the position in
Fig. 17 has more POIs which are close to it and uniformly distributed.
Hence, the results suggest that the localization error is indeed related
to the distribution of surrounding POIs, especially when the user’s
position and observed POIs are on the same circle. However, the
situation only happens twice among total 29 positions. If the situation
happens, we will ask the user to walk a short distance and relocalize
himself/herself again.

3) The influence of smartphone hardware: We further evalu-
ate the localization error by using different smartphones at the same
positions in large shopping malls. The results are shown in Fig. 15(b).
We can see the average localization error is 2.66m for MI 5 and
2.51m for Huawei Mate 7. Since User 2 turns slower than User 1,
the more redundant view images make the localization error variance
of Huawei smartphone is smaller than MI 5. Overall, EyeLoc works
well on both smartphones and does not depends on any smartphone
specific hardwares and parameters.

B. Processing Efficiency
The other important performance metric is the processing time,

which is from the end of circle shoot to the user’s position is
shown on the screen. Since the view image processing dominates
the overall processing time, EyeLoc have designed two approaches,
namely outlier image filtering and sparse image processing. We
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further evaluate the processing time of three methods: “All” indicates
we process all view images; “Filter” indicates we only process the
view images after filtering the outliers. “Filter+Sparse” indicates we
combine outlier filtering and sparse processing approaches. As shown
in Fig. 18, we can see Filter+Sparse outperforms the other two
methods and its median processing time is 18.2s which is 55.5%
shorter than All. Moreover, the median processing time of Filter is
27.3s which is 36.2% shorter than All. That verifies both outlier
filtering and sparse processing are effective to improve the processing
efficiency. In the worst case, the processing time of Sparse+Filter is
37.4s. That means the user can obtain the localization result in no
more than half minute after circle shoot. Fig. 19 further shows the
processing time on different smartphones.

VI. RELATED WORK

In recent years, many indoor localization systems are proposed.
According to the type of physical information sources, we divide
existing works into four categories.

Wi-Fi Signals Many indoor localization systems apply Wi-Fi
signals. One approach is fingerprinting. The user’s location is es-
timated by querying a measured fingerprint to a database constructed
for the target area. Place Lab [2] use site survey to construct the
fingerprint database, while LIFS [22] utilizes crowdsourcing. Another
approach is to model the geometric relationship between Wi-Fi access
points (AP) and the user through the propogation of Wi-Fi signals.
EZ [3] uses the received signal strength (RSS) to estimate the
signal propagation distance. SpinLoc [12] extracts the angle-of-arrival
(AoA) of several APs to determine the location. ArrayTrack [20] uses
the antenna array and phase shifts to obtain accurate AoA spectrum.
Chronos [16] further refine the distance and AoA measurement
methods to achieve high localization precision or adapt to COST
Wi-Fi APs.

Visible Light Visible light positioning systems apply lamps
(fluorescent and LED) as landmarks. The target senses light from
landmarks and achieves self-localization. Luxapose [5] takes an
image which contains several LEDs and calculate AoA. According to
optical emission features of both LED and fluorescent, iLAMP [24]
identifies a lamp’s location from a pre-configured database by feature
matching. It further combines camera image and inertial sensors
to infer user’s location. CELLI [18] develops a custom LED bulb
which projects a large number of fine-grained light beams toward
the service area. The light beam is modulated. SmartLight [8] uses
LED array and a lens to form the light transmitter. The different
PWM frequencies of LED lamps contain location information.

Others Magicol [13] and FollowMe [14] combine the geomagnetic
field and user trajectories as the fingerprint to localize the user.
Swadloon [4] and Guoguo [7] use acoustic signal to construct
geometric models. Shenlong Wang, etc. [17] utilize the floor-plan
image and a scene image to localize a user in large shopping malls.
Based on edge, text and layout features of a scene image, they use
Markov random field model to infer the camera pose on the floor-
plan image. However, they need to search all possible positions which
incurs huge computation complexity.

Compared with these methods, EyeLoc depends on neither pre-
deployed infrastructure (i.e., Wi-Fi APs, custom lamps, acoustic
speaker) nor pre-collected information (i.e., Wi-Fi fingerprint, lamp
optical emission features, scene images, geomagnetic field). More-
over, EyeLoc does not require custom hardwares and can be imple-
mented as a smartphone application.

VII. CONCLUSION

In this paper, we propose EyeLoc, a plug-and-play localization
system for large shopping malls without suffering from the burden
of system bootstrap and calibration. EyeLoc enables the smartphone
to imitate the human self-localization behavior. After a user opens
EyeLoc application, he/she carries out circle shoot, during which
the smartphone continuously shoots view images. After that, EyeLoc

automatically projects the user’s position and heading direction on the
floor-plan image. We implement EyeLoc as an Android application
and evaluate its performance in various environments. The evaluation
results show that the 90-percentile accuracy of localization and
heading direction is 4m and 20◦.
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