
Multi-Objective Approach to Improve Load Balance
and Blockage in Millimeter Wave Cellular Networks

Masoud Zarifneshat, Proteek Roy, Li Xiao
Department of Computer Science and Engineering Michigan State University

East Lansing, Michigan
Email: {zarifnes, lxiao}@cse.msu.edu, royprote@egr.msu.edu

Abstract—One of the main enabling technologies of 5G wireless
networks is to use mm-Wave spectrum band. Despite its large
and wide frequency bandwidth, the obtained data rate can be
diminished due to link blockage in this frequency band. In
this paper, we formulate a bi-objective optimization problem
to optimize user association in cellular networks with mm-
Wave enabled base stations. The two objectives to minimize are
maximum base station utility and blockage score (to indicate the
chance of a link getting blocked). We simulate three different
scalarization methods to turn a bi-objective vector into a scalar.
Since the combinatorial bi-objective problem is NP-Hard, we
conduct Lagrangian dual analysis on all of the scalarization
methods. Solving the dual problem decreases the time complexity
of the solver algorithm, but the solution has a distance from the
optimal point created by solving the primal. We also solve the
primal optimization problem with a single objective optimization
tool. Compared to the time complexity of the primal problem of
scalarization methods, the time complexities of solutions to the
dual problems are lower. The results show that our solution to
bi-objective optimization problem has a better outcome in terms
of the number of link blockage and the maximum base station
utility compared to optimizing each objective alone.1

Index Terms—Millimeter Wave, Cellular Networks, Link
Blockage, Load Balancing, Bi-Objective Combinatorial Opti-
mization

I. INTRODUCTION

The increasing demand for wireless network capacity in
terms of frequency bandwidth has created the need to find wide
bandwidths that can handle vast amounts of data required for
future data-hungry applications. One technology that is able
to provide wireless networks with such bandwidth is to use
high-frequency mm-Wave spectrum. The natural difference of
mm-Wave spectrum with low-frequency spectrum introduces
a new set of challenges that require new approaches to tackle
problems like high path loss and sensitivity to blockage [1].

The link breakage due to low diffraction of mm-Wave is
an important issue especially in mm-Wave cellular networks
with potential blocking objects (e.g., humans). mm-Wave
signals experience dramatic attenuation when going through
the human body. When a transmitter transmits by beams with
widths 3.4◦ and 30◦ and beams are fully blocked by a close-by
human body, the receiver senses no signal [2]. Since the human
body is composed of a significant amount of water, the beam
blockage severity is quite high. Zhu et al. [3] show that groups

1This work was partially supported by the U.S. National Science Foundation
under grants CNS-1547015 and CNS-1617412.

of people can block a communication link. The reflected beam
off the walls or other hard surfaces cannot contain the required
energy to be used as high rate carrier [1]. Therefore, a method
to switch to different base stations is needed.

The existing user association algorithms for reducing block-
age and increasing link availability in mm-Wave networks
do not consider load balancing base stations. The blockage
reduction algorithms aim to minimize the blockage effect
which may result in overloading some base stations (BS) due
to having more user equipments (UE) associated to those
BSs with links that are considered to have a lower chance
of getting blocked by blocking objects. Therefore, if the UEs
associate themselves to BSs only according to the blockage
objective, some BSs will be overloaded while others be
underutilized, which may lead to performance degradation [4].
In an unbalanced network, some BSs may have extra capacity
to accept new UEs but are less attractive for UEs to connect
because they are assigned with high blockage chance based
on the blockage reduction algorithm. In this case, since the
blockage chance of a link is only an estimation of future
blockage incidents based on previous blockages, the actual
blockage may not happen for a BS whose blockage chance is
estimated to be high and consequently becomes underutilized.
In general, the blockage reduction algorithms divert UEs to
BSs with less blockage chance, which may result in overloaded
or underutilized BSs and degrades network performance.

This problem calls for a more holistic view of the blockage
control and load balancing. Improving the performance based
on one metric results in deterioration of the other, a framework
that accounts for both blockage and load balancing at the same
time is needed to improve the overall performance.

In this paper, we consider both blockage reduction and
load balance in our user association algorithm design and
formulate a bi-objective combinatorial optimization problem
to optimize user association in mm-Wave cellular networks
according to the two objectives. The bi-objective problem is
then transformed into a single objective problem using three
scalarization methods. For all of the scalarization methods,
both primal and dual problems are solved. The challenge of the
problem is formulating the optimization problem as a single
objective problem from biobjective problem and capturing the
true relation between two objectives. The objectives are of
discrepant nature in the way their parameters are collected and
influence the performance of the network. The involvement of
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each of the objectives can be adjusted when needed. In this
way, the solver can prioritize an objective over the other.

The contributions of this paper include defining an opti-
mization problem and the solution to the optimization prob-
lem. The solution to the optimization problem will give an
opportunity to the network to adjust its performance policy
via user association with respect to the objective functions.
The second contribution is a subgradient solution to different
single objective problems of the bi-objective problem, which
has polynomial time complexity compared to the primal solver
that has exponential time complexity.

The contributions of this paper are summarized as follows:
1) We define a biobjective optimization problem to opti-

mize load balance and blockage score in the network.
2) We use scalarization methods to convert vector of ob-

jective to a scalar.
3) We develop a solution for each scalarization method

within polynomial time complexity (compared to expo-
nential time complexity of current methods).

The rest of this paper is structured as follows. In Section
II, the state-of-the-art of the user association algorithms with
combinatorial optimization problems is discussed. Section III
is dedicated to system model and objective functions used
in this paper. In Section IV, we formulate our bi-objective
optimization problem. We solve the single objective ptimiza-
tion problems generated by scalarization methods in Section
IV. Simulation results are discussed in Section V. Finally, the
paper concludes with Section VI.

II. RELATED WORK

In this section, we discuss the literature of user asso-
ciation problem in wireless networks on joint optimiza-
tion/improvement domains. Liu et al. [5] have proposed a
taxonomy for User Association (UA) methods in wireless
networks. According to the methodology used in our paper,
we review some of the works related.

The user association can be done to improve or optimize the
outage/coverage probability. Dhillon et al. [6] have proposed
a framework for computing the coverage probability in multi-
tier HetNets. Cheung et al. [7] have introduced a model to
compute success probability in each tier considering different
spectrum allocation policies.

The combinatorial approach for user association is used
in [8]. The authors formulated a joint optimization problem
of user association and channel allocation decision between
macrocells and small cells in a HetNet. As a follow-up,
Ghimire et al. [9] have proposed a framework to analyze the
performance of HetNets by optimizing resource allocation,
transmission coordination and user association with the ob-
jective of maximizing data rate throughput. Joint optimization
of base station sleep mode, user association and subcarrier
allocation to maximize total power consumption are discussed
in [10].

In the area of the mm-Wave spectrum, Xu et al. [11]
have discussed the problem of joint optimization of user

association and relaying traffic to other clients. The objec-
tive is to maximize the total network throughput. In [12]
the authors defined an optimization problem to minimize
the maximum load across all base stations with the goal
of optimizing user association. Sakaguchi et al. [13] have
proposed a user association method in mm-Wave networks that
considers supported available rate and number of users in each
cell. For energy harvesting networks [14] have formulated an
optimization problem to maximize network utility while the
energy consumption of each base station does not exceed the
harvested amount.

All of the discussed literature share the fact that they try
to optimize one or more variables based on single objectives.
The factor that distinguishes our work with the ones discussed
here is that in our work, we want to optimize user association
in mm-Wave networks considering two objectives at the same
time. Since the input variables are binary, the problem we
are considering is a bi-objective combinatorial optimization
problem. To the best of our knowledge, the joint considera-
tion of load balancing and blockage avoidance in the same
optimization problem is not considered in any other work.

III. SYSTEM MODEL AND OBJECTIVE FUNCTIONS

In this section, we discuss the specifics of the system that
we consider for our proposed method. Then, we introduce the
two objectives, load balance and blockage score, on which
we want to optimize the user association variable. We also
briefly introduce three scalarization methods used to transform
2-dimensional objective vector to a scalar.

A. System Model

In our system, we have N base stations (BS), M user
equipment (UE) and P blocking objects (BO). The set of BSs
is defined as N = {1, 2, . . . , N} and the set of the UEs is
defined as M = {1, 2, . . . ,M}.
Mi is defined as the set of UEs that are served by BSi.

Analogously, Nj is defined as the set of all BSs that are in
the UEjs communication range. The communication range of
UE and BS is assumed to be equal to R meters.

The antennas on BSs are assumed to be able to rotate all
360◦ degrees or in the interval [−π,+π] in radian.

B. Objective Functions

We want to optimize user association based on two ob-
jectives. The first one is Load Balance (t) objective which is
defined as the maximum total utility of one base station across
BS i ∈ N . The second objective is Blockage Score (B) that is
defined as total blockage score of all links in the network. In
the following two subsections, we discuss these two objective
functions in more details.

1) Load Balance: For the first objective, we use the load
balancing optimization problem definition and solution pro-
vided by Athanasiou et al [12]. The authors have defined the
channel utilization between BSi and UEj as βij =

Qj

Rij
where

Rij is the rate of the link between BSi and UEj and Qj is
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the demanded data rate of UEj . The user association variable
that is going to be optimized is defined as,

xij =

{
1, if UEj associated to BSi

0, Otherwise
(1)

The combinatorial optimization problem for optimizing user
association variable x is formulated as,

minimize t (2a)

subject to
∑

j∈Mi

βijxij ≤ t, ∀i ∈ N (2b)∑
i∈Nj

xij = 1, ∀j ∈M (2c)

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj (2d)

2) Blockage Score: For the second objective, we use the
idea introduced in [15]. In order to capture the chance of a
link between BS and UE to be blocked, the authors of [15]
introduced the concept of Blockage Score. The blockage score
is used to have an estimate for likelihood of a link being
blocked in the future based on previous blockage incidents.
The blockage score is a function of distance from previous
blockage incidences. When an new UE comes into the area, its
blockage score with respect to all BSs in its range is computed.

In their paper, the blockage score shown as γij , is the chance
of link between UEj and BSi being blocked in future. The
authors of [15] defined objective function for blockage score
of the whole network is defined as follows,

minimize B =
∑
i∈N

∑
j∈Mi

γij .xij

subject to
∑
i∈Nj

xij = 1, ∀j ∈M

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj

(3)

C. Scalarization Methods

To solve the bi-objective optimization problem, one needs to
convert it to single objective function. Scalarization methods
are used to do the conversion. We have used three differ-
ent scalarization methods including Achievement Scalariza-
tion Function (ASF) [16], Normal Constraint (NC) [17] and
Weighted Sum (WS) [18]. Due to space limitation, we do not
elaborate the mentioned methods, and the interested reader
may read the cited papers.

To generate the weight vectors for the scalarization methods,
we have used Das and Dennis method [19]. This method
generates equally spaced weight vectors in any number of
dimensions.

IV. BI-OBJECTIVE OPTIMIZATION PROBLEM

In this section, we first formulate the bi-objective optimiza-
tion problem. The single objective optimization problem of
bi-objective optimization problem (4) is formulated by the
scalarization methods introduced in Section III-C. Then, the
transformed single objective problem is solved by appropriate
methods. We borrow the general approach used in [12] to

solve the single objective problem generated by the three
scalarization methods via dual analysis.

To optimize user association based on both load balancing
and blockage score objectives, we formulate the optimization
problem as,

minimize f(t, B) (4a)

subject to
∑

j∈Mi

βij .xij ≤ t, ∀i ∈ N (4b)∑
i∈Nj

xij = 1, ∀j ∈M (4c)

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj (4d)

In Equation (4), the objective B is total blockage score in
the network. The problem formulated in (4) is a Bi-Objective
Combinatorial Optimization (BOCO) problem. User associ-
ation problem is combinatorial. The algorithms for solving
these problems have exponential time complexity [12]. We
transform the problem (4) into single objective problem by
using three scalarization methods introduced in Section III-C.
Then we solve the resulting primal single objective problems.
We also provide the Lagrangian dual solutions to the single
objective problems which have lower time complexity than the
exponential primal solution.

A. Formulation and Solution of ASF Scalarization Method

In this section, we formulate the single objective opti-
mization problem of the bi-objective problem defined in (4)
generated by ASF scalarization method. Then, we use dual
analysis to solve the single objective optimization problem for
ASF scalarization method.

1) ASF Generated Single Objective Problem: ASF method
needs an ideal minimum point z. The ideal point in our defined
problem (4) is z = (0,0) for objective vector (t, B). Since
both objectives of maximum BS utilization and total blockage
score cannot get negative values, thus assuming the ideal point
as zero for both objectives is logical. The ideal point may or
may not be reachable. We formulate the ASF generated single
objective problem as,

minimize max(
t

w0
,
B

w1
)

subject to
∑

j∈Mi

βij .xij ≤ t, ∀i ∈ N∑
i∈Nj

xij = 1, ∀j ∈M

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj

(5)

In problem (5), B is total blockage score, w = (w0, w1) is
the weight vector. Since there are two objectives the size of
weight vector is 2. The problem in (5) can be reformulated to
be linear as authors in [12] did to formulate min-max problem.
The problem can be reformulated as,

minimize S (6a)

subject to
t

w0
≤ S (6b)
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B

w1
≤ S (6c)∑

j∈Mi

βij .xij ≤ t ∀i ∈ N (6d)∑
i∈Nj

xij = 1, ∀j ∈M (6e)

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj (6f)

In problem (6), is a linear combinatorial optimization prob-
lem. The objective is the maximum of two terms of original
ASF formulation. The primal problem in (6) is solved by a
linear program solver to get to its optimum solution.

2) Solution to ASF Generated Single Objective Problem
via Dual Analysis: In this section, we elaborate a solution
to ASF generated single optimization problem formulated in
Equation (6). The problem in (6) is a mixed integer linear
program (MILP) and its complexity is proved to be NP-
hard [12]. In order to have a distributed low complexity
method of solving bi-objective problem defined in Equation
(4), we discuss Lagrangian dual analysis of single objective
optimiztion problem generated by ASF scalarization method.

First, we eliminate variable t from Equation (6) and replac-
ing B with its equivalent. In order to do that, the constraint
(6b) can be removed by using it in constraint (6d) and
replacing variable B with its value defined in [15], making
the resulting optimization problem as,

minimize S (7a)

subject to

∑
i∈N

∑
j∈Mi

γij .xij

w1
≤ S (7b)∑

j∈Mi
βij .xij

w0
≤ S ∀i ∈ N (7c)∑

i∈Nj

xij = 1, ∀j ∈M (7d)

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj (7e)

We solve Equation (7) as the optimization problem for ASF
scalarization method.

In order to obtain Lagrangian of an optimization prob-
lem, the objective function and the constraints of the primal
problem go together in another optimization problem. Then,
the Lagrangian dual is derived by computing infimum of
Lagrangian with respect to all variables other than Lagrangian
multipliers. The Lagrangian of problem in Equation (7) using
only objective function (7a) and first two constraints (7b) and
(7c) is formulated as,

L(S,x,λ) = S.

(
1− λN+1 −

∑
i∈N

λi

)
+

∑
i∈N

∑
j∈Mi

xij .
(γij
w1

.λN+1 +
βij
w0

.λi
) (8)

In Equation (8), the Lagrangian multipliers are gathered in
vector λ = (λ1, λ2, . . . , λN+1). There are N Lagrangian
multipliers, one for each constraint in (7c) and another one

for constraint (7b). We also swapped the index of nested
sum operators according to equivalence {(i, j) | i ∈ N , j ∈
Mi} ≡ {(n,m) | m ∈ M, n ∈ Nm} used in [12]. We also
borrowed from [12] the definition of a vector space that input
x satisfies constraints (7d) and (7e). The vector space X is
Cartesian product of X = X1 × X2 × · · · × XM . Each Xj is
defined as,

Xj = {xj = (xij)i∈Nj
|
∑
i∈Nj

xij = 1, xij ∈ {0, 1}, i ∈ Nj}

(9)
According to Equation (9), each Xj is jth column in matrix

x that has a single one and all other entries are zeros. The
single one can be in any N entries of the column j. Now, we
are ready to define the Lagrangian dual problem. It is defined
as,

g(λ) = inf
S∈IR
x∈X

L(S,x,λ) (10a)

=


inf
x∈X

∑
i∈N

∑
j∈Mi

xij .
(γij
w1

.λN+1 +
βij
w0

.λi
)
,∑N+1

i=1 λi = 1

−∞, otherwise
(10b)

=


∑

j∈M
inf

xj∈Xj

∑
i∈Nj

xij .
(γij
w1

.λN+1 +
βij
w0

.λi
)
,∑N+1

i=1 λi = 1

−∞, otherwise
(10c)

=


∑

j∈M
gj(λ),

∑N+1
i=1 λi = 1

−∞, otherwise
(10d)

In Equation (10), the condition for case one of Equations (10b)
and (10c) go to the next line since the whole line could not
be fitted in the column width. The infimum of Lagrangian in
Equation (8) is formulated with respect to two variables S and
x. The infimum of the term containing S with respect to S
in Equation (8) is −∞. Therefore, it is unbounded. In order
to have a bounded S term, we need to make the coefficient
of S, zero in Equation (8). That is made possible by having
coefficient of S equal to zero as condition in dual problem. The
vector space we defined in (9) helps us to deduce Equation
(10c). In Equation (10c), the infimum is computed over all
xj members of the set Xj . The Lagrangian dual problem is
formulated as,

maximize g(λ) =
∑
j∈M

x∗ij .
(γij
w1

.λN+1 +
βij
w0

.λi
)

(11a)

subject to
N+1∑
i=1

λi = 1 (11b)

λi ≥ 0 (11c)
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In Equation (11a), x∗ij is computed using the following for-
mula,

x∗ij =

1, i = arg min
k∈Nj

(γkj
w1

.λN+1 +
βkj
w0

.λk
)

0, otherwise
(12)

The Equation (12), is resulted from the fact that the infimum
in gj(λ) is over the set Xj . Therefore, the entries of x∗ij are
all zeros except the ith entry that has minimum

γij
w1

.λN+1 +

βij
w0

.λi for UEj .

The problem in (11), is a concave function. It also is non-
smooth which leads up to use of subgradient method because
it is a non-differentiable function. Since the dual problem
has constraint (11b), the projected version of subgradient
method is used. In this version, in order to make sure that
the variable values are chosen from the constraint polygon,
an Euclidean projection of current point on the constraint
polygon is generated as the next solution to the optimization
problem. There are N+1 variables of λi that each will have a
subgradient. Therefore, subgradient of −g (since subgradient
is for minimization problems) is a vector with N+1 elements.
The subgradient of −g in a feasible λ is

ui =


−
∑

j∈Mi

βij
w0

.x∗ij , i ∈ N

−
∑

j∈M

∑
i∈Nj

γij
w1

.x∗ij , i = N + 1
(13)

Then the next value of vector λ is computed by,

λ(k+1) = P (λ(k) − αk.u
(k)) (14)

In Equation (14), P (λ(k)−αk.u
(k)) is Euclidean projection of

point λ(k)−αk.u
(k) in N +1 dimensional space into simplex

defined by {λ |
∑N+1

i=1 λi = 1}. The parameter αk is a step
size variable in kth iteration.

The subgradient algorithm works iteratively. In each itera-
tion (k), it considers vector λ(k−1) and computes a new vector
λ(k) for current iteration. Vector λ(k) is then used to compute
x∗ij via Equation (25). Then the value of x∗ij is used to compute
the subgradient vector. This cycle continues for a constant
number of times defined by iteration number of subgradient
algorithm.

The subgradient method does not find the optimal solution
but can find a near optimal solution within reasonable time
complexity. In order to compute the time complexity of sub-
gradient algorithm, we analyze all the steps mentioned earlier.
The computation of x∗ matrix is of order O(M.N). Comput-
ing subgradient vector also costs O(M.N). There are different
algorithms to compute the Euclidean projection on simplex.
The one we used has a time complexity of order O(N log(N)).
If we call iteration number of subgradient method K, the total
time complexity of subgradient method is O(K.M.N). The
worst order is O(max(K,M,N)3) which is of polynomial
time complexity compared to exponential time complexity for
methods that solve primal problem. This difference is very

important for systems with limited processing resources and
real time response expectations.

B. Formulation and Solution of NC Scalarization Method

In this section, we formulate and solve the linear single
objective optimization problem that is generated by NC scalar-
ization method.

Normal Constraint (NC) method requires two Utopian
points to do the scalarization. These two points are the
optimum values for all objectives when solved separately.
The NC is the same as ASF method, but the difference is
in how they draw the reference vectors. In NC, unlike ASF,
the reference vectors are drawn in parallel. The reformulated
version for NC generated single objective problem is shown
as,

minimize max
(
NF1 − (w0 − 0.5), NF2 − (w1 − 0.5)

)
(15a)

subject to
∑

j∈Mi

βij .xij ≤ t ∀i ∈ N (15b)∑
i∈Nj

xij = 1, ∀j ∈M (15c)

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj (15d)

In which NF1 =
t− f1(Xl)

f1(Xr)− f1(Xl)
=
t− f1(Xl)

C1
(15e)

NF2 =
B − f2(Xr)

f2(Xl)− f2(Xr)
=
B − f2(Xr)

C2
(15f)

In problem (15), NF1 and NF2 are normalized objective
values for first and second objectives. Xl is the optimal
solution to the optimization problem that minimizes maximum
load t in the network. Similarly, Xr is the optimal solution to
optimization problem that minimizes total blockage score B.
f1(x) is the objective value for maximum load of solution x
and f2(x) is the objective value for total blockage score B.
The values in max function are normalized objective values.
Like ASF formulation (6), we want to reformulate problem
(15) to make it a linear optimization problem. The result is
formulated as,

minimize S (16a)
subject to NF1 − (w0 − 0.5) ≤ S (16b)

NF2 − (w1 − 0.5) ≤ S (16c)∑
j∈Mi

βij .xij ≤ t, ∀i ∈ N (16d)∑
i∈Nj

xij = 1, ∀j ∈M (16e)

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj (16f)

The problem in (16) is a linear optimization problem that can
be solved by LP solvers.
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1) Solution to NC Generated Single Objective Problem via
Dual Analysis: The solution to NC generated signal objective
problem uses the same methodology as the solution to ASF
scalarizartion method.

In order to get to the linear optimization problem, the t
variable needs to be eliminated and NF1 and NF2 parameters
are replaced with extreme constants as in Equations (15e)
and (15f). Parameter B is also replaced by it equivalent
according to [15]. The variable elimination is done through
using constraint (16b) in constraint (16d). Therefore, variable
t is eliminated and the reformulated problem is shown as,

minimize S (17a)

subject to

∑
i∈N

∑
j∈Mi

γij .xij

C2
− f2(Xr)

C2
− w1 + 0.5 ≤ S

(17b)∑
j∈Mi

βij .xij

C1
− f1(Xl)

C1
− w0 + 0.5 ≤ S, ∀i ∈ N

(17c)∑
i∈Nj

xij = 1, ∀j ∈M (17d)

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj (17e)

We compute the Lagrangian of optimization problem in (17),
like we did it for ASF in Section IV-A2. We use objective
function (17a) along with constraints (17b) and (17c). There-
fore, the Lagrangian is formulated as,

L(S,x,λ) = S.

(
1− λN+1 −

∑
i∈N

λi

)
+

∑
i∈N

∑
j∈Mi

xij .
(γij
C2

.λN+1 +
βij
C1

.λi
)
−(

f2(Xr)

C2
+ w1 − 0.5

)
.λN+1−(

f1(Xl)

C1
+ w0 − 0.5

)
.
∑
i∈N

λi

(18)

From Lagrangian in (18), we can deduce Lagrangian dual opti-
mization problem for (17). The Lagrangian dual is formulated
as,

g(λ) = inf
S∈IR
x∈X

L(S,x,λ) (19a)

=



inf
x∈X

∑
i∈N

∑
j∈Mi

xij .
(γij
C2

.λN+1 +
βij
C1

.λi
)

−
(
f2(Xr)

C2
+ w1 − 0.5

)
.λN+1

−
(
f1(Xl)

C1
+ w0 − 0.5

)
.
∑
i∈N

λi,
∑N+1

i=1 λi = 1

−∞, otherwise
(19b)

=



∑
j∈M

inf
xj∈Xj

∑
i∈Nj

xij .
(γij
C2

.λN+1 +
βij
C1

.λi
)

−
(
f2(Xr)

C2
+ w1 − 0.5

)
.λN+1

−
(
f1(Xl)

C1
+ w0 − 0.5

)
.
∑
i∈N

λi,
∑N+1

i=1 λi = 1

−∞, otherwise
(19c)

=


∑

j∈M
gj(λ),

∑N+1
i=1 λi = 1

−∞, otherwise
(19d)

In (19b) and (19c), the whole term before each colon is the
term for the first case and the term after colon is the condition.
For spacing reasons the term for the first case in those two
equations are extended to three lines. Similar to the ASF
solution, we get different formulations for Lagrangian dual.

The Lagrangian dual optimization problem is,

maximize g(λ) =
∑
j∈M

x∗ij .
(γij
C2

.λN+1 +
βij
C1

.λi
)

−
(
f2(Xr)

C2
+ w1 − 0.5

)
.λN+1

−
(
f1(Xl)

C1
+ w0 − 0.5

)
.
∑
i∈N

λi

subject to
N+1∑
i=1

λi = 1

λi ≥ 0

(20)

In Equation (20), x∗ij is computed as,

x∗ij =

1, i = arg min
k∈Nj

(γkj
C2

.λN+1 +
βkj
C1

.λk
)

0, otherwise
(21)

The subgradient of optimization problem in (20) is formu-
lated as,

ui =


−
∑

j∈Mi

βij
C1

.x∗ij +
f1(Xl)

C1
+ w0 − 0.5, i ∈ N

−
∑

j∈M

∑
i∈Nj

γij
C2

.x∗ij +
f2(Xr)

C2
+ w1 − 0.5, i = N + 1

(22)
By using the subgradient in Equation (22) and subgradient

method it is possible to solve the optimization problem in
(20). The general approach is the same as described in Section
IV-A2.

C. Formulation and Solution of WS Scalarization Method

Weighted sum method multiplies objective values by a
weight vector and then sums over the results. For our specific
problem, we formulated weighted sum scalarized optimization
problem as,

minimize w0.t+ w1.B (23a)

subject to
∑

j∈Mi

βij .xij ≤ t, ∀i ∈ N (23b)
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∑
i∈Nj

xij = 1, ∀j ∈M (23c)

xij ∈ {0, 1}, ∀j ∈M, i ∈ Nj (23d)

The objective function in weighted sum method is a linear
function, so there is no need for reformulation of problem
(23). Due to space limitation, we skip the analysis that leads
to the Lagrangian dual problem. The Lagrangian dual problem
is formulated as,

maximize g(λ) =
∑
j∈M

x∗ij .
(
w1.γij + λi.βij

)
(24a)

subject to
∑
i∈N

λi = w0 (24b)

λi ≥ 0, i ∈ N (24c)

In Equation (24a), x∗ij is computed using the following for-
mula,

x∗ij =

1, i = arg min
k∈Nj

(
w1.γkj + λk.βkj

)
0, otherwise

(25)

For subgradient method we compute the subgradient of opti-
mization problem in (24). The subgradient of −g in a feasible
λ is u = (uj)i∈N and ui = −

∑
j∈Mi

x∗ij .βij . Then the next
value of vector λ is computed by recursive subgradient method
formulation in (14).

In Equation (14), P (λ(k)−αk.u
(k)) is Euclidean projection

of point λ(k) −αk.u
(k) in N dimensional space into simplex

defined by {λ |
∑

i∈N λi = w0}.

D. Semi-Distributed Algorithm for Dual Analysis

In this section, we introduce a semi-distributed algorithm
that is used to do the computations of the solution to the
dual problem discussed in previous sections. We need to
compute the subgradient of the dual problem and the step
in subgradient method to solve the dual problem for three
single objective problems generated by all three scalarization
methods in Equation (14). The evaluation of this equation
requires the evaluation of subgradients of three scalarization
methods. It also needs to compute x∗ij for the scalarization
methods.

The algorithm is a semi-distributed one as there are some
parts of it need to be run by a centralized entity like CRAN
[20]. The rest of the operations can be done in a distributed
manner between BSs and UEs. The semi-distributed algorithm
for user association (SDA) is elaborated in Algorithm 1.

In Algorithm 1, there are two different initializations, central
and distributed. In central initialization, CRAN is responsible
to distribute the general parameters to BSs. These parameters
include weight vectors for all scalarization methods and λN+1

for ASF and NC scalarization methods and C1 and C2 for
NC scalarization method. The general parameters can only be
computed by an entity that has a holistic view of the network.
That is why CRAN is responsible for it. According to this
algorithm, a change in number of BS or UE should not incur
a considerable load on distributed process. For central process,
the CRAN can handle the change properly as it is designed
to do so.

Algorithm 1 Semi-distributed Algorithm for User Association
(SDA)

1: Initialize: Central {CRAN distributes the parameters to
BSs}

2: Initialize: Distributed {Each BSi distributes λ(k) at time
k and γij to UEs j ∈Mi}

3: UEj computes its associated BSi by Equations (12), (21)
and (25)

4: UEj only signals its associated BSi and BSi compute
subgradient according to subgradient equations for each
scalarization method

5: λ(k+1) computed by communication between BSs for the
next step

6: if stopping criterion not met go to 3

V. SIMULATION RESULTS

In this section, we discuss the simulation results of different
scalarization methods discussed in the previous section based
on two different objective functions defined. We also used a
primal problem solver called Gurobi [21]. Version 7.0.1 of
Gurobi solver is used in our simulations.

A. Parameters and Metrics

We use OMNet++ [22] network simulator to simulate the
environment. The simulation area is a rectangle of 100× 500
square meters. There are M = 100 user equipments, N = 50
base stations and P = 130 blocking objects.

The user association methods studied in this simulation
section are Achievement Scalarizing Function (ASF), Normal
Constraint (NC) and Weighted Sum (WS) methods. We also
solved the optimization problem for each of load balance and
blockage score objective functions separately. Two different
solvers used for solving different methods. Subgradient algo-
rithm is used to solve the dual optimization problem. This
algorithm is used to solve ASF, NC and WS generated single
objective problems and single objective optimization problem
for load balance objective function. We also use primal prob-
lem solver to solve all single objective problems at hand. It
includes single objective scalarized optimization problems and
the load balance and blockage score optimization problems
separately. Gurobi is the name of the solver, and it is shown
on figures.

There are several metrics that we use to measure and
compare the performance of our bi-objective optimization
approach to single objective approaches. The first metric is
Average Blockage per Blocking Object. Each time a blockage
occurs in the network that is recorded. The blockage count
is cumulative over time. Then the total number of blockages
in the network is divided by the number of blocking objects.
The second metric is Average Handover per User Equipment.
A counter increments when a handover occurs. The total is
divided by M . This metric is cumulative over time as well. We
also compute rate and SINR for all active links in the network.
We use the formulation in [23]. In this formulation, the SINR
for a link in the mm-Wave network is a function of antenna
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Fig. 1. Average Blockage Count

orientation, path loss model, independent Nakagami fading
model for small-scale fading and thermal noise of propagation
environment. We also use the objective values of load balance
and total blockage score for all user association methods we
discussed.

The values for these parameters are absolute quantities. All
of them are the results of simulations with the equal duration.
Therefore, the results show the differences of the performance
of the algorithms under the same conditions. Thus, the values
of the parameters are used to fairly comparing the performance
of the algorithms.

There are two metrics named False Positive and False
Negative. They are defined based on optimal behavior of
handover. The simulator knows the optimal BS for a UE to
connect. false positive and false negative ratios are defined
based on whether a UE is connected to an optimal BS or not.
If based on the optimal behavior the UE should be connected
to a BS, but it does not, it counts as one false negative. On
the other hand, if a UE should stay in the current BS, but it is
connected to another BS, it counts as one false positive. The
negativity is detected based on handover event. The optimal
behavior is defined based on the blockage. since the blokage
objective is heuristic, it is possible the after handover to a BS,
the UE experiences a blockage. Therefore, this handover is
not optimal. In general the optimal behavior is when doing or
not doing a handover does not cause blockage and does not
degrade the load balance objective of the network.

B. Results and Discussion

In the following, we depict figures for different metrics we
discussed.

All of the scalarization methods have 40 subproblems. It
means that we generated 40 different weight vectors and then
solved the single optimization problem generated by each
of scalarization methods using each weight vector. Unless
specifically mentioned, the comparison between load balance
and minimum blockage score and scalarization methods is
made with subgradient solution of scalarization method with
40 subproblems. Unless stated otherwise, the solver for all
methods is subgradient. Whenever there is a comparison
involving primal solver, the number of the subproblem is 40
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as well. For load balance method, we used the subgradient
method used in [12]. As depicted in Fig. 1, the three scalar-
ization methods have lower average blockage score than each
load balance and minimum blockage score methods. Among
the scalarization methods, the weighted sum has the best
performance while ASF and normal constraint are close to
each other. The normal constraint has the worst performance
than the other two scalarization methods. Since blockage score
is a heuristic, minimizing that does not guarantee the best
performance.

In Fig. 2, the comparison is made between all scalarization
methods and load balance method solved by subgradient and
gurobi solvers. As can be seen in this figure, subgradient
solver has a slightly better performance than gurobi solver
for weighted sum and load balance methods.

The average handover count is showed in Fig. 3. As shown
in this figure, the handover count of scalarization methods
are nearly the same but more than minimum blockage score
method. Load balance has the worst performance in this
metric. Minimum blockage score on the other hand has the
best performance.

False positive ratio is showed in Fig. 4. The false positive
count for three scalarization methods are less than the separate
objectives. Among separate objectives, load balance has better
ratio. We see almost the same pattern for false negative ratio
in Fig. 5. Within scalarization methods, weighted sum has the
best performance of all.

The CDF of SINR is depicted in Fig. 6. It is evident that
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Fig. 6. Cumulative Distribution Function for SINR

normal constraint solved with gurobi solver has links with
high SINR with higher frequency than two objective functions
separately. Minimum blockage score and normal constraint
solved with subgradient solver are the same in terms of SINR.
Load balance has the worst performance.

The column diagram of the average rate for different user
association algorithms is presented in Fig. 7. In this figure,
we include the result for both solvers. However, for minimum
blockage score method, the solver is just a simple, primal
solver and we did not need to use either gurobi or subgradient
solvers. The normal constraint is the best algorithm according
to rate metric. The scalarization methods are performing better
than blockage score and load balance methods except for ASF
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subgradient. Load balance has the worst metric value.
As shown in Fig. 8, the load balance algorithm has the

best performance for minimizing the maximum load in the
network. We have the same structure as Fig. 7 here. Three
scalarization methods have close performance while all out-
performing blockage score algorithm. For subgradient versions
of scalarization methods, the weighted sum has the best
performance compared to other two methods.

Fig. 9 shows how the number of subproblems in bi-objective
solver will affect resulting load objective value. There are
solutions with 10, 20, 30 and 40 subproblems for each
scalarization and single objective methods that are solved by
either subgradient or gurobi solvers. As shown in the figure,
the general trend of load objective reduces when the number
of subproblems (weight vectors) increases. It means that when
there are more weight vectors, it is more probable that the
solver finds better solutions. We can also see that the gurobi
solver results are better than subgradient. For selecting the
best solution from s solutions (s is the subproblem size), we
choose a solution that its objective values are closest to the
ideal point, (0, 0) point.

The comparison between SINR values for two different
solutions to normal constraint scalarization method is pre-
sented in Fig. 10. The figure shows that the primal solutions
have better SINRs for all sub-problem sizes. However, the
trend within each curve is almost increasing with increase in
subproblem size.
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VI. CONCLUSION

In this paper, we study the user association problem in
mm-Wave cellular networks. We considered two objective
functions, one for minimizing blockage in the network and the
other for minimizing maximum load across all base stations
in the network. The results show that the bi-objective ap-
proach achieves better performance on reducing both load and
blockage score, on increasing SINR and keeping base stations
in the networks less loaded. For weighted sum scalarization
method, we showed that solution to the dual problem via
subgradient method has better time complexity than solving
the primal problem, but with the cost of losing some SINR
value. A possible Future direction of this research can be an
investigation of other factors affecting link blockage chance
and the importance of their role in this area.
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