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Urban development pattern significantly impacts stream water quality by influencing pollutant generation,
build-up, and wash-off processes. It is thus necessary to understand and predict stream water quality in accor-
dance with different urban development patterns to effectively advise urban growth planning and policies. To
do so, we collected pollutant concentration data on nitrate (NO3

−-N), total phosphate (TP), and Escherichia coli
(E. coli) from 1047 sampling stations in the Texas Gulf Region.We utilized a Random Forest (RF) machine learn-
ing model to predict streamwater quality under four planning scenarios with different urban densities and con-
figurations. SHapley Additive exPlanations (SHAP) was used to prove the importance of urban development
pattern in influencing streamwater quality. The spatial variations of the impact of these patterns were explored
with Geographically Weighted Regression (GWR). SHAP results indicated that Largest Patch Index (LPI), Patch
Cohesion Index (COHESION), Splitting Index (SPLIT), and Landscape Division Index (DIVISION) were the most
important urban development pattern metrics affecting streamwater quality. The spatial variations of such pat-
ternswere shown to impact streamwater quality depending on pollutants, seasonality, climate, and urbanization
level. RF prediction results suggested that high density aggregated development was more effective in reducing
TP and NO3

−-N concentrations than the current sprawl development, but had the potential risk of increasing
E. colipollution in thewet season. The results of this studyprovide empirical evidence and a potentialmechanistic
explanation that streamwater quality degradation is a consequence of urban sprawl. Lastly, machine learning is a
powerful tool for scenario prediction in land use planning to forecast environmental impacts under different
urban development pattern scenarios.
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1. Introduction

Human-induced land use, such as urban and industrial land use, is
recognized as a dominant factor affecting stream water quality. A
small increase in the percentage of urban land use has been found to
exert a disproportionately large influence on generation of pollutants
(Ai et al., 2015; Giri and Qiu, 2016; Oeding et al., 2018; Sun et al.,
2011; Wijesiri et al., 2018). Within a similar percentage of urban devel-
oped areas, varying patterns of urban development can contribute to
considerable differences in streamwater quality due to different pollut-
ant generation, build-up, and wash-off processes (Goonetilleke et al.,
2005; Liu et al., 2012). Therefore, streamwater quality prediction in var-
ious locations, densities, and patterns of urban development can serve
as a basis for developing sound stream water quality management
schemes (Fan and Shibata, 2015; Holcomb et al., 2018). However, the
specific influence of urban development patterns on streamwater qual-
ity remains unclear. In a large, regional spatial extentwith the heteroge-
neous landscape, the influence of urban development patterns on
stream water quality also shows great spatial and temporal non-
stationarity (Chen et al., 2016; Pratt and Chang, 2012; Tu and Xia, 2008).

Urban development pattern has complex influences on stream
water quality as measured by the interactions between area, shape,
edge, aggregation of urban areas, and stream pollutant concentrations
(Forman, 2014; Sun et al., 2014; Yu et al., 2013). Theoretically, large
areas of directly connected impervious areas (DCIA) have been shown
to harm downstream water bodies (Del Monaco, 2017; Jones et al.,
2005; Obropta and Del Monaco, 2018; Sohn et al., 2017 ). However,
this does not necessarily mean that urban development should be
more dispersed to reduce DCIA, as it can lead to potential ecosystem
fragmentation and difficulty in implementing management practices
(Bu et al., 2014; Shi et al., 2017). The ambiguity regarding whether in-
tact or fragmented urban areas cause stream water degradation is ap-
parent in the contradictory conclusions of investigations between
urban development patterns and stream water quality. Some re-
searchers have argued that an intact urban pattern with large amounts
of impervious surface can contribute to water quality deterioration
(Ding et al., 2016; Li et al., 2015). However, other studies found that
greater interspersion of urban areas, as indicated by high Contiguity
Index and Patch Cohesion Index, significantly increased the export of
pollutants due to the destruction of natural areas (Lv et al., 2015; Shi
et al., 2013). More research is needed to address this question, particu-
larly by controlling urban developed areas at the same percentage.
Doing so ensures that different urban development patterns are compa-
rable in terms of their influence on stream water quality.

One of the major challenges in quantifying stream water quality in
accordancewith factors of urbandevelopment patterns is to understand
which factors are themost important in influencing streamwater qual-
ity. Some studies have found that size and number of urban areas, as
quantified by Patch Density, Largest Patch Index, and Edge Density,
showed higher degrees of relationships to water quality compared to
the isolation and connectedness of urban areas (Carey et al., 2011; Lee
et al., 2009). Others have found that the shape and aggregation of
urban developed areas had greater explanatory power in predicting
stream water quality variations (Li et al., 2015; Yu et al., 2013). These
varying results from previous studies regarding the correlation between
urban development pattern and streamwater quality have been attrib-
uted to two reasons. First, many studies reported important urban de-
velopment pattern metrics at the local level using a small number of
catchment samples (Li et al., 2015; Lintern et al., 2017; Sun et al.,
2014). Thus, few studies have investigated the importance of urban de-
velopment pattern in the context of a large heterogeneous area with a
large watershed sample size. Second, there is a lack of more robust
methods for improving the generalization of results regarding the im-
portance of urban development pattern metrics. For example, stepwise
regression, the most commonly used algorithm for finding variable im-
portance in predicting stream water quality, was found to sometimes
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generate problematic results due to approaches intent on only local op-
timization at each selection step (Harrell, 2017).

Furthermore, quantifying the relationships between stream water
quality and urban development pattern necessitates the development
of predictive models that can be used to forecast stream water quality
in alternative urban planning scenarios (Avila et al., 2018; Holcomb
et al., 2018; Molina-Navarro et al., 2020; Sharifi et al., 2017). Machine
learning algorithms, such as boosted regression tree analysis, neural
networks, and self-organizing maps, have been applied to depict the
complex, non-linear relationships between landscape characteristics
and stream water quality with satisfactory model performance
(Castrillo and García, 2020; Hameed et al., 2016; Kalteh et al., 2008;
Sajedi-Hosseini et al., 2018; Xu et al., 2020). One advantage of the ma-
chine learningmodel is the possibility of revealing the complex, nonlin-
ear relationships between land cover characteristics and stream water
quality (Mirzaei et al., 2020). The other advantage is that after the accu-
racy of a machine learning model is tested on a new dataset, it could be
applied to forecast streamwater quality under future land use planning
scenarios to support policy decision-making (Chermack and Swanson,
2008; Schreiber et al., 2019). This study enhances the existing machine
learning studies in the area of streamwater quality prediction by creat-
ing interpretablemachine learningmodels that uncover the importance
of urban development pattern, and facilitate scenario prediction of
stream water quality with the same impervious area but different
urban development patterns.

The goal of this study is thus to provide a comprehensive under-
standing of howdifferent urban development patterns influence stream
water quality, investigating the aspects of important factors, spatial var-
iations, predictive models, and potential mechanisms. Using the Texas
Gulf Region as the study site, stream water quality—represented by
NO3

−-N, TP, and E. coli concentrations—was quantified and predicted
by urban development patternmetrics, controlling for landscape spatial
pattern, topography, soil, climate, and population. Specifically, this
study has three objectives: 1) To identify the most important factors
of urban development pattern that influence NO3

−-N, TP, and E. coli con-
centrations, and to suggest specific urban forms for streamwater quality
protection; 2) to uncover the seasonal and spatial non-stationary rela-
tionships between urban development pattern and stream water qual-
ity; and 3) to develop predictive models that can forecast stream
water quality based on different scenarios of urban development densi-
ties and configurations as well as provide implications for land use
planning.

2. Data and methods

2.1. Study site

The study site was the Texas Gulf Region, which has an area of
471,080 km2 (Fig. 1). It is one of 21 water resource regions (HRU 02)
in the United States, consisting of 11 subregions (HRU04) and 23 basins
(HRU 06). The climate of this region is diverse, with a maritime climate
along the coast, a continental climate in the central and northern areas,
and a dry andhot climate in thewest. These diverse climates lead to het-
erogeneous landscapes across the region. From east to west, the terrain
ecosystem changes from coastal swamps and piney woods to rolling
plains and rugged hills. The heterogeneity of these climate and land-
scape factors provides ideal samples for studying their influence on
stream water quality.

Moreover, the increasing population in the study site has resulted in
problems associated with urban sprawl, which has put natural forest
areas at risk and degraded stream water quality. Texas currently has a
population of approximately 29 million people, with a growth rate of
1.8% every year (World Population Review, 2019). Nonpoint source
pollution closely related to urban expansion contributes to 75% of
stream water quality impairment in Texas (Texas Commission on
Environmental Quality, 2012). The resulting high nitrogen and



Fig. 1.Map of study site showing land cover, basins, and the locations of sampling stations.
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phosphorous levels may contribute to the eutrophication of waterbody
that fuels the growth of phytoplankton and periphyton, and lead to low
dissolved oxygen levels for the aquatic system. The combination of high
nutrient levels, high water temperature, and low dissolved oxygen
levels that are frequently observed along the Texas coast is primarily re-
sponsible for fish kills (Parsons, 2019; Texas Commission on
Environmental Quality, 2019). Elevated concentration of bacteria such
as E. coli and fecal coliform, which is found in the south-central Texas
streams, may indicate the health risk in contact recreational activity
(Texas Commission on Environmental Quality, 2005). According to the
above regional water quality issues, we selected NO3

−-N, TP, and E. coli
concentrations as the contaminants of interest in this study.

2.2. Data and variables

Pollutant concentration data of NO3
−-N, TP, and E. coli from 1047

sampling stations in the Texas Gulf Region were used as predicted var-
iables in this study. To monitor and assess stream water quality, the
Texas Commission on Environmental Quality's (TCEQ) Surface Water
Quality Monitoring (SWQM) Program has installed over 3000 active
monitoring stations throughout the region. Pollutant concentration
data in 2011 were obtained from the SWQM program and aggregated
in dry and wet seasons by taking the average values (Table S2). Accord-
ing to the monthly average precipitation in Texas, the dry season went
from November to April, and the wet season occurred the rest of year
(Pratt and Chang, 2012). In this study, TP and E. coli samples covered
most basins in the Texas Gulf Region. After seasonal aggregation, the
sample size of TP and E. coli data in the dry season was 868 and 788 re-
spectively. However, because of data availability, NO3

−-N concentration
sample size was 329 in the dry season, covering only the coastal basins.
All the pollutant concentration data were highly positively skewed
(Table S1).
3

Landscape metrics at both class and landscape levels, climate, soil,
topography, and population were included as explanatory variables to
explain variations in streamwater quality (Table 1). The class levelmet-
rics included land covers of developed area, developed open area, forest
area, and planted area, which have been demonstrated to be major en-
vironmental drivers of changes in stream water quality (Clément et al.,
2017; Glińska-Lewczuk et al., 2016; Teklu et al., 2016). Our analytical
steps focused on metrics from urban development pattern and used
other metrics as control variables. The definition of all land covers was
in accordance with NLCD (Homer et al., 2015), and all variables in this
study and their corresponding data sources are presented in Table S2.

We incorporated high dimensions of landscape metrics in the ma-
chine learningmodels, including 76 class levelmetrics and 32 landscape
level metrics in the categories of area, edge, shape, and contagion/inter-
spersion (McGarigal, 1995), as presented in Table 1. The random forest
machine learningmodel thatwe used in this study generallyworkswell
with high-dimensional problems because of the random subsets of var-
iables in the predictingprocess (Darst et al., 2018). A large set of features
can also potentially increase predicting accuracy. The explanation and
calculation of all the landscape metrics can be found in Table S3.

We added environmental and social control variables including pre-
cipitation, temperature, slope, elevation, soil type, soil storage depth,
population, and population density to control for model bias (Table 1).
The PRISMmonthly climate dataset, which is a gridded climate dataset,
was used in this study. Thewatershed climatic variableswere calculated
by taking the average values among all the grids inside the watershed
boundary. To simplify interpretation, the aggregated seasonal total pre-
cipitation and mean temperature were used to find variable impor-
tance. The original monthly total precipitation and mean temperature
were used in the predictive models to facilitate higher predicting accu-
racy. In this study, soil type referred to hydrological soil groups (HSG).
HSG A, B, C, and D have a high infiltration rate, a moderate infiltration



Table 1
Explanatory variables.

Category Subcategory Variable

Class Level Metrics (76)a

(including classes of developed open area,
developed area, forest area, and planted area)

Area (28) Percentage of Landscape (PLAND), Total Area (CA), Median of Patch Area (AREA_MD),
Median of Radius of Gyration (GYRATE_MD), Largest Patch Index (LPI), Number of Patches
(NP), Patch Density (PD)

Edge (8) Total Edge (TE), Edge Density (ED)
Shape (20) Median of Perimeter-Area Ratio (PARA_MD), Median of Shape Index (SHAPE_MD), Median of

Fractal Dimension Index (FRAC_MD), Median of Related Circumscribing Circle (CIRCLE_MD),
Median of Contiguity Index (CONTIG_MD)

Contagion/Interspersion (20) Landscape Division Index (DIVISION), Splitting Index (SPLIT), Interspersion Juxtaposition
Index (IJI), Landscape Shape Index (LSI), Patch Cohesion Index (COHESION)

Landscape Level Metrics (32) Area (6) Total Area (CA), Largest Patch Index (LPI), Median of Patch Area (AREA_MD), Median of
Radius of Gyration (GYRATE_MD), Number of Patches (NP), Patch Density (PD)

Edge (2) Total Edge (TE), Edge Density (ED)
Shape (6) Perimeter-Area Fractal Dimension (PAFRAC), Median of Perimeter-Area Ratio (PARA_MD),

Median of Shape Index (SHAPE_MD), Median of Fractal Dimension Index (FRAC_MD), Median
of Related Circumscribing Circle (CIRCLE_MD), Median of Contiguity Index (CONTIG_MD)

Contagion/Interspersion (10) Landscape Division Index (DIVISION), Splitting Index (SPLIT), Effective Mesh Size (MESH),
Interspersion Juxtaposition Index (IJI), Landscape Shape Index (LSI), Patch Cohesion Index
(COHESION), Contagion (CONTAG), Proportion of Like Adjacencies (PLADJ), Aggregation
Index (AI), Median of Euclidean Nearest Neighbor Distance (ENN_MD)

Diversity (8) Patch Richness (PR), Patch Richness Density (PRD), Shannon's Diversity Index (SHDI),
Simpson's Diversity Index (SIDI), Modified Simpson's Diversity Index (MSIDI), Shannon's
Evenness Index (SIEI), Simpson's Evenness Index (SIEI), Modified Simpson's Evenness Index
(MSIEI)

Climate (24) Precipitation (12) Monthly Precipitation, Seasonal Average Precipitation
Temperature (12) Monthly Temperature, Seasonal Average Temperature

Topography (2) Elevation, Slope
Soil (6) Soil Storage, the Presence of Hydrologic Soil Groupsb A, B, C, D, C/D, B/D
Population (2) Population, Population Density

a The number in the parenthesis indicates the number of variables in the group.
b If a soil was placed in HSG D because of a high-water table, it might be assigned to a dual hydrologic group such as A/D, B/D, or C/D. The first letter of the pair represented the soil's

group if drained and the second letter, D, represented the natural drainage condition.
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rate, a slow infiltration rate, and a very slow infiltration rate,
respectively.

2.3. Data analysis

In this study, we applied Random forest (RF) regression to build the
predictive models of stream water quality. SHapley Additive exPlana-
tions (SHAP) feature importance from RF models was used to explore
whether urban development pattern was the dominant factor in deter-
mining stream water quality among all the catchment characteristics.
Geographically Weighted Regression (GWR) was then applied to un-
derstand the spatial variation of the relationships between urban devel-
opment patterns and pollutant concentrations. Finally, the trained RF
models were employed to predict streamwater quality under four sce-
narios of different urban development patterns.

2.3.1. Random Forest (RF) regression and the corresponding SHapley Addi-
tive exPlanations (SHAP)

RF regression was used to train models to quantify the nonlinear re-
lationships between explanatory variables and stream water quality. It
was further applied to scenario predictions of pollutant concentrations
in accordance with different urban development patterns. RF is an en-
semble learning method that consists of a large number of individual
decision trees. Random samples are takenwith replacement, and a ran-
dom subset of features are used to generate each regression decision
tree. A prediction is made by averaging the results of all the regression
trees (Breiman, 2001). We selected RF for this study because it handles
high non-linearity between independent variables well and is robust to
outliers, which is suitable for our dataset (Kho, 2018).

To guarantee the generalization of the predictive models, 90% of the
samples were used to train the models, and the remaining sample was
used to test the models' performance. Performance metrics included
Mean Square Error (MSE) and R2, which are commonly used metrics
in water quality prediction study (Lek et al., 1999; Wang et al., 2019),
and Nash-Sutcliffe model coefficient (NSE), which is used to assess the
4

predictive performance of hydrological models (Nash and Sutcliffe,
1970). Prior to RF model training process, all the independent variables
were standardized to transform data into more standard, normally dis-
tributed data. Natural log was taken to all the pollutant concentration
values. Very large outliers (TP > 4 mg/l or E. coli > 10,000 MPN/
100ml orNO3

−-N>17mg/l),whichwere approximately three standard
deviations above themean concentration,were removed. Ten-fold cross
validation was employed to tune the hyperparameters including the
number of trees (n_estimators), the maximum depth of the tree
(max_depth), the minimum number of samples required to split a
node (min_sample_split), and the maximum number of features to
look for the best split (max_features) using a grid search fashion. Ran-
dom forest regression was implemented in Python 3.0 “scikit-learn”
package.

To understand which variables dominate RF models and their asso-
ciationswith streamwater quality, SHAP feature importancewas calcu-
lated for each RF model. SHAP is a game theoretic approach that can
interpret anymachine learningmodel. The goal is to explain the predic-
tion of an instance by computing the contribution of each feature to the
prediction. Global feature importance is calculated by averaging the ab-
solute Shapley values per feature across all the samples (Lundberg and
Lee, 2017; Molnar, 2019). From SHAP summary plot, we know the rela-
tionship between each catchment characteristic and the prediction of
pollutant concentration. SHAP results were derived in Python 3.0
“shap” package.

2.3.2. Geographically weighted regression (GWR)
GWR was applied to investigate the spatially varying associations

between important urban development pattern metrics and stream
water quality. GWR was used because it improves the model capacity
to reveal the local cause of stream water pollution in this large study
area. The independent variables included in the GWR models were
land cover percentages, topography, population, soil storage, seasonal
mean temperature and total precipitation, and important landscape
metrics derived by SHAP of RFmodels. The important landscapemetrics
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were COHESION, DIVISION, LPI, SPLIT, IJI, ED, PD of urban development
areas and planted areas, FRAC_MD, CONTIG_MD, AREA_MD, SPLIT of
forest areas, and ED of developed open areas.

GWR allows linear predictors to be a function of spatial coordinates
(u, v), as represented in Eq. (1). In this equation, yi is the pollutant con-
centration, xk,i is the covariate vector, and βk is the corresponding vector
coefficient. GWR assumes that the contribution of each sample to
the local regression model is weighed according to its proximity to the
local sample point. A common choice of weighting function is the
Gaussian curve, as shown in Eq. (2), where dij is the distance between
observation point i and the realization point j, and the bandwidth b is
the parameter to be determined. An adaptive kernel bandwidth was
employed in this study in accordance with the judgement of AIC. GWR
was implemented in “spgrw” package in R.

yi ¼ β0 ui, við Þ þ∑
k

j¼1
βk ui, við Þxk,i þ εi ð1Þ

ωi,j ¼ exp −
dij

2

2b2

 !
ð2Þ

2.4. Scenario design

To understand the effects of urban developed density and configura-
tion on stream water quality, we created four alternative urban devel-
opment scenarios in the upstream area of The Woodland, TX, and
predicted their pollutant concentrations of NO3

−-N, TP, and E. coli in
both dry and wet seasons (Fig. 2). The Woodlands are well-known for
Ian McHarg's ecological planning approach (McHarg and Sutton,
1975). The current development condition was chosen as the baseline
scenario, where 33.6% of the area (24 km2) was developed into urban
areas. Low-density development is the major development type in the
current condition. The boundary of the scenario site is the Bear
Branch-Panther Branch sub-watershed boundary with the HUC12 ID
120401020211.

The alternative scenarios included four extreme development sce-
narios where developed areas were extremely scattered or aggregated:
high-density aggregated development, high-density sprawl develop-
ment, medium-density aggregated development, and medium-density
sprawl development (Fig. 2). We applied two criteria to create the
four development scenarios. First, the total impervious surface area
was the same as the baseline scenario. To quantify impervious surface
in urban areas for each density, we used themedian value of the imper-
vious surface percentage from NLCD description, which were 35%, 65%,
and 90% for low density, medium density, and high-density develop-
ments, respectively (Yang and Li, 2011). The impervious surface areas
added up to be 16.4 km2 in all scenarios. Second, all of the existing
land cover types in the baseline scenario—includingwater, forest, grass-
land, planted, and wetland—stayed the same. The reduced urban areas
in the four alternative scenarios were changed to forest areas that rep-
resent undeveloped conditions. To approximate the maximum degree
of aggregated/sprawl development, we manually chose locations of
high/medium-density development that had changed to forest areas
in ArcGIS 10.5. When selecting the locations of urban developed areas,
we maintained the historical trend of The Woodland development,
that is to develop from downstream to upstream along the Panther
Creek to the north (Yang and Li, 2011). Therefore, the aggregated devel-
opment was located close to the downstream area. This trend was also
in accordance with McHarg's ecological planning approach to develop
residential areas on land with low soil permeability (McHarg, 1996).

The key difference in each scenario was urban development pattern,
as presented in Table S4. Compared to the two sprawled scenarios, de-
veloped areas were clumped into larger patches with simpler shapes,
and were more physically connected in the two aggregated scenarios.
5

The two aggregated scenarios were thus characterized by higher LPI,
COHESION, lower ED, LSI, and shape complexity.

3. Results

3.1. RF model accuracy and the important catchment characteristics in
influencing stream water quality

In the RF regression model, the variations and trends of all pollutant
concentrationswerewell captured in the test set; however, the extreme
values were not well predicted (Fig. S2). The very low concentrations
tended to be overestimated and the very high concentrations tended
to be underestimated. In the wet season, the R2 of the test set was
0.64, 0.46, and 0.64 for the TP, E. coli, and NO3

−NRFmodels, respectively.
The NSE of the test set was 0.61, 0.45, and 0.69 for TP, E. coli, and NO3

−N
wet season models, respectively (Table 2).

Urban development pattern outweighed other land use patterns in
affecting TP concentration.Wepresent the tenmost important variables
and visualize their associations with pollutant concentrations in Fig. 3.
The twenty most important variables and their directions of influence
are shown in Table S5 for further reference. COHESION, DIVISION, LPI,
and SPLIT of developed areas were found to be the most important
urban development pattern metrics in affecting TP concentration
(Fig. 3). A lower DIVISION of developed areas represented the condition
where the proportion of developed areas increased, and the developed
patches increased in size. TP concentration was likely to increase in
this situation. When developed patches became more physically con-
nected, as indicated by a higher COHESION, TP concentration also in-
creased. Large patch sizes of developed areas, as indicated by a larger
LPI, led to high TP concentration. The decrease of SPLIT also implied an
increase in TP concentration, where developed patches increased in
area and became less subdivided. When developed areas were more
equally interspersed with other land cover types, as indicated by a
higher IJI, TP concentration decreased in dry seasons (Table S5). The im-
portant catchment characteristics affecting TP concentration in dry and
wet seasons were similar, with most of the urban development pattern
effects greater in wet seasons.

The important variables influencing E. coli concentration were asso-
ciated withmore variable categories, including patterns of urban devel-
oped areas, developed open areas, planted areas, and some landscape
level metrics. It indicated a potentially more complex mechanism
(Table S5). Similar to TP results, higher E. coli concentration was associ-
ated with higher LPI, higher COHESION, lower DIVISION, and lower
SPLIT of developed areas (Fig. 3). Higher proportion of developed
areaswith larger patch sizes andmore connectionwith other developed
patches contributed to higher E. coli concentration. In addition, higher
ED of developed areas, developed open areas, and planted areas,
which implied more complex edges of these patch types, were associ-
ated with higher E. coli concentration. At the landscape level, the me-
dian of GYRATE and the median of FRAC had positive associations
with E. coli concentration, while IJI had a negative association with
E. coli concentration in the wet season. Therefore, large patch size, com-
plex patch shape, and uneven distribution of adjacencies among patch
types led to high E. coli concentration. Similar to TP results, urban devel-
opment pattern had larger effects on E. coli concentration inwet seasons
than in dry seasons.

Both urban development and forest patternswere importantly asso-
ciated with NO3

−-N concentration, with forest pattern more important
in dry seasons than in wet seasons. Similar to TP and E. coli results,
higher COHESION, higher LPI, lower SLPIT, and lower DIVISIONof devel-
oped areas were associated with higher NO3

−-N concentration (Fig. 3).
The higher connectedness and larger patch sizes of developed areas
contributed to higher NO3

−-N concentration. In dry seasons, the situa-
tion where developed areas were more equally adjacent with other
land covers (indicated by a higher IJI) helped reduce NO3

−-N concentra-
tion. A lower median of CONTIG, lower ED, and higher SPLIT of forest



Fig. 2. Scenario maps.
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area also led to higher NO3
−-N concentration in dry seasons, which sug-

gests that intact forest areas with complex edges could potentially re-
duce NO3

−-N concentration. In wet seasons, percentages of both urban
developed areas and developed open areas were positively associated
with NO3

−-N concentration. A higher ED of developed open areas also
contributed to higher NO3

−-N concentration. It was also discovered
that urban development pattern had a larger effect NO3

−-N concentra-
tion in wet seasons than in dry seasons.
Table 2
Predicting accuracy of RF regression.

Train set

Correlation R2 MSE

TP Wet season 0.98 0.96 0.16
Dry season 0.98 0.96 0.15

E. coli Wet season 0.98 0.96 0.58
Dry season 0.98 0.96 0.35

NO3
−-N Wet season 0.97 0.94 0.35

Dry season 0.97 0.94 0.29

6

In summary, urban development pattern was more important than
the percentage of urban developed areas and other land use patterns
in determining the pollutant concentration of TP, E. coli, and NO3

−-N.
The most important aspects were patch size and connectedness of
urban developed areas.With respect to other catchment characteristics,
high temperature was important in driving the increase of pollutant
concentration. Areas with high soil storage levels were associated with
TP and E. coli pollution.
Test set

NSE Correlation R2 MSE NSE

0.91 0.80 0.64 0.79 0.61
0.91 0.76 0.58 0.85 0.56
0.90 0.68 0.46 3.04 0.45
0.90 0.71 0.50 2.06 0.49
0.91 0.83 0.69 1.37 0.64
0.91 0.82 0.68 1.56 0.64



Fig. 3. SHAP results of feature importance from RF regression.

R. Wang, J.-H. Kim and M.-H. Li Science of the Total Environment 761 (2021) 144057
3.2. Spatial variation of the effects of urban development pattern on stream
water quality

In this study, TP GWR performed better in coastal areas such as the
Neches Basin and the Galveston Bay-San Jacinto Basin, with the R2

higher than 0.45 (Fig. S1). The performance of the E. coli GWR was
also better in coastal areas. The wet season E. coli model had R2 above
0.4 in the coastal areas, while the dry season E. coli model had R2

above 0.31 with a lower variation. Because of the smaller spatial extent,
the variation of NO3

−-N GWR models was much smaller than that of TP
and E. colimodels. TheNO3

−-NGWRmodel performed better in thewest
basins (the Nueces-Southwestern Texas Coastal and the Lower
Colorado-SanBernardCoastal Basin) than the east basins (theGalveston
Bay-San Jacinto Basin, the Trinity Basin, and the Sabine Basin). Lastly,
the NO3

−-N GWR model performed better in the dry season than in
the wet season, with the global R2 0.54 and 0.48, respectively.

We selected COHESION, IJI, and LPI of urban developed areas to ex-
plore their spatially varying relationship with pollutant concentrations
in Fig. 4. The three metrics were all important as indicated by the
SHAP results, and distinct in their conceptual meanings. Among the
most important urban development metrics, COHESION exerted a
greater positive effect on TP concentration in the southern portion of
the study area, which included the Nueces-Southwestern Texas Coastal
Basin, the Central Texas Coastal Basin, the Lower Colorado-San Bernard
Coastal Basin, and the Lower Brazos Basin (Fig. 4). When developed
7

areas were more proportionally interspersed with other land cover
types (indicated by a higher IJI), TP concentration in the east portion
of the study area (the Trinity Basin, the Neches Basin, and the Galveston
Bay-San Jacinto Basin) decreased more than the west portion. Large
patch sizes of developed areas (indicated by a higher LPI) were shown
to have a larger effect on TP concentration in the south and west parts
of the study area. These areas were mainly crop, pasture, and forest
areas.

Similar to TPmodels, highly aggregated urban developed areas (high
COHESIONof developed areas) had larger effects on E. coli concentration
in the southern part of the study area. In the very northern part like the
Trinity Basin, COHESION had a negative influence on E. coli concentra-
tion. Large patch sizes of urban developed areas had greater positive ef-
fects on E. coli concentration in coastal basins, including the Central
Texas Coastal Basin, the Galveston Bay-San Jacinto Basin, the Nueces-
Southwestern Texas Coastal Basin, and the east part of the Lower
Colorado-San Bernard Coastal Basin. IJI of developed areas had a nega-
tive effect on E. coli concentration in the southeastern coastal areas.
The effects trended towards positive in the northwest part of the
study area.

NO3
−-N concentration was more positively affected by the connec-

tion (COHESION) and large patch size (LPI) of urban developed area in
the west coast of the study area, including the Central Texas Coastal
Basin and thewest part of the Lower Brazos Basin. NO3

−-N concentration
was more dependent on IJI of developed areas in the east coast, which



Fig. 4. GWR model coefficients of urban development pattern effects in the wet season.
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encompassed the Galveston Bay-San Jacinto Basin, the south part of the
Lower Colorado-San Bernard Coastal Basin, and the Sabine Basin. In
these areas, when developed areas were more proportionally inter-
spersed with other land cover types (indicated by a higher IJI), NO3

−-N
concentration was more likely to decrease. We discuss the mechanism
that can potentially drive the spatial variation in the effects of urban de-
velopment pattern in Section 4.2.
3.3. Stream water quality prediction under alternative planning scenarios

The prediction results of the alternative planning scenarios suggest
that a high-density aggregated development pattern was advantageous
in reducing TP and NO3

−-N concentrations (Table 3). All high-density
andmedium-density compact developments had less than half the con-
centration of all pollutants compared to the current development, indi-
cating the benefits of small footprint urban areas. The benefit of small
footprint urban areas was most significant in reducing NO3

−-N
concentrations.

Aggregated development in both high and medium density scenar-
ios had lower TP and NO3

−-N concentrations when compared to sprawl
development of the same density. However, aggregated development
contributes to higher E. coli concentrations than sprawl development
of the same density in wet seasons. Overall, the most recommended
urban development pattern for stream water quality protection was
high-density aggregated development; though specific attention should
be paid in areaswith potential E. coli pollution to avoid very high density
development. It was worth noting that the predicted values of NO3

−-N
were comparable to the measured data at the TCEQ Station #16629,
8

whichwas located close to the outlet of the basin, indicating the reliabil-
ity of our predictive models.

Regarding ecological implication, NO3
−-N concentration higher than

1.5 mg/l, which was presented in the current sprawl development
(baseline scenario), was considered as the hypereutrophic level of
lakes. All the alternative compact urban development scenarios gener-
ated NO3

−-N < 0.5 mg/l, which were oligotrophic or mesotrophic tro-
phic levels (Nitrogen fact sheet, 2016). Regarding TP concentration,
scenarios other than high-density aggregated and medium-density ag-
gregated development were all associated with the hypereutrophic
level, which is 0.1 mg/l (Yang et al., 2008). Therefore, aggregated devel-
opment was proven to be beneficial to lotic ecosystems by avoiding po-
tential eutrophication.

4. Discussion

4.1. The complexity of urban development pattern impact on stream water
quality

DIVISION and SPLIT of developed areas were proven to be important
in influencing all the pollutant concentrations by the SHAP results. They
both represent patch subdivision calculated by the relationship be-
tween the single patch area and the total landscape area (Table S3).
They are potentially useful in characterizing residential urban form
given how they are subdivided into blocks (Bach et al., 2013). The differ-
ence between the two metrics is that DIVISION departs from the maxi-
mum limit slowly when patches become more scattered, and
approaches the minimum limit quickly if very large patch areas are
present and they become less subdivided. Therefore, low DIVISION of



Table 3
Scenario prediction results of pollutant concentration.

Current
development

High-density aggregated
development

High-density sprawl
development

Medium-density aggregated
development

Medium-density sprawl
development

TP Wet season 0.22 (0.55a) 0.10b 0.13 0.11 0.14
Dry season 0.28 (0.11) 0.09 0.15 0.10 0.13

E. coli Wet season 90.18 33.40 17.52 85.71 67.49
Dry season 41.05 22.02 41.79 31.46 44.28

NO3
−-N Wet season 1.95 (2.92) 0.10 0.18 0.19 0.27

Dry season 1.2 (1.03) 0.15 0.22 0.17 0.36

a Values in the parentheses are measured pollutant concentrations at the TCEQ Station # 16629, which is close to the outlet of this basin.
b The unit is mg/l for TP and NO3

−-N and MPN/100 ml for E. coli.
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urban developed areas ismore likely to lead to higher pollutant concen-
tration compared to low SPLIT of urban developed areas. On the con-
trary, a high SPLIT value is more likely to associated with clean water
compared to a high DIVISION value of urban developed areas (Fig. 3).

COHESION is sensitive to the aggregation and physical connected-
ness of the focal class. Large and aggregated urban areas, as indicated
by a high contiguity index (CONTIG) or contagion index (CONTAG),
were associated with poor stream water quality in some studies (Lee
et al., 2009; Lv et al., 2015; Shi et al., 2017). However, since greater inter-
spersion and increases in the number of urban patches may accelerate
soil erosion and sediment exportation (Shi et al., 2013), we argue that
although an intact urban area with large impervious surfaces can result
in the deterioration of water quality (Alberti et al., 2007; Lee et al.,
2009), the same area of impervious surface can lead to worse stream
water quality with greater dispersion, as verified in our scenario predic-
tion results. The SHAP results also indicated that high COHESION did not
necessarily lead to high pollutant concentration (Fig. 3).

It is worth noting here that the effect of the urban development pat-
tern on water quality should always be interpreted with caution due to
the collinearity between urban development pattern metrics and the
urban area percentage. Therefore, the effect of urban development pat-
tern on stream water quality derived by some statistical models can
sometimes be caused by the percentage of urban developed areas. The
conceptually similar urban development metrics cannot replace each
other, nor can they be replaced by the percentage of urban developed
area. As indicated in Fig. S3, a low percentage of developed area does
not necessarily mean low COHESION or high IJI. Similarly, a high per-
centage of developed area does not necessarily mean low DIVISION.
For example, high percentages of developed areas can be very scattered,
and the COHESION of urban developed areas can be low and the
DIVISION can be high in this situation.

We discovered that soil storage is a strong factor that positively af-
fected pollutant concentration according to SHAP feature importance
results. This is because soil, which acts as a primary sink and source of
terrestrial contaminants, can affect stream water quality through sub-
surface and soil water (Liu et al., 2017; Taka et al., 2016). Therefore,
soil with a deep storage layer might be associated with a larger terres-
trial source and a higher risk or holding contaminants to influence sur-
face water quality, the mechanism of which is worth future
investigation. Air temperature is also important in affecting water tem-
perature, and thus affects water chemistry. Higher temperatures were
found to be correlated with higher nutrient concentrations, which
could be a more serious issue as the climate warms (Baron et al.,
2009). Therefore, warmer areas with larger soil storage depth could be
potential hydrologically sensitive areas that generate more pollution,
and should be cautiously planned with urban development.

4.2. Interpretation of spatiotemporal non-stationary land-water
relationships

In this study, the effects of urban development pattern on stream
water quality were greater in the wet season than in the dry season ac-
cording to the SHAP results. This conclusion agrees with existing
9

literature that the effects of composition and configuration of land
cover are more evident during the rainy season (Bu et al., 2014; Shi
et al., 2017). This might be because in urban areas, the flushing effect
during the wet season outweighs the dilution effect in the study region
(Liu et al., 2017). Under future climate change conditions, urban devel-
opment pattern might have a more complicated effect on streamwater
qualitywith changing precipitation. Precipitation predictions associated
with climate change vary by location and often include a lot of uncer-
tainty, up to the point that the sign of change is uncertain (Wuebbles
and Hayhoe, 2004).

Moreover, the influence that urban development pattern exerted on
stream water quality had high spatial variations according to the GWR
results, which might be attributed to different pollutant sources from
different basins. The relationship between LPI of developed areas and
TP concentration was weaker in the coastal urban area than the inland
agricultural area. We argue that in highly urbanized areas, a larger LPI
of developed areas corresponds to aggregated development with
fewer urban patches, and in this situation, it is less likely to cause pollu-
tion because of the smaller urban footprint of the aggregated develop-
ment. However, in the agricultural area, the relationship between the
LPI of developed areas and the TP concentration changed to highly pos-
itive (Fig. 4). In these watersheds, there were not many urban patches,
and a large LPI of developed areas simply implied larger urban core
areas and larger total impervious areas, which would contribute to the
increasing pollutant concentration.

COHESION of developed areas has shown themost significantly pos-
itive association with E. coli concentration in the Galveston Bay-San
Jacinto Basin, which is a highly urbanized area. This might be because
aggregated development led to more E. coli pollution, which aligned
with our scenario prediction results. However, TP concentration
showed relatively weak dependency on the COHESION of developed
areas in the same highly urbanized area. Since the impact of large
patch size (indicated by LPI) andmore aggregation (indicated by COHE-
SION) of developed areas on TP concentration was not large in this
highly urbanized area, we argue that the negative effect of urban sprawl
might play a more important role in these areas. The potentially differ-
ent mechanisms on how urban sprawl affects TP and E. coli pollution
warrant future investigation.

Furthermore, the IJI of developed area had a higher negative
influence on TP and E. coli concentration primarily in the coastal urban
watersheds (Fig. 4). In these watersheds, low IJI of developed areas
was usually associated with low density development, which was the
most common development type in this region. If developed areas
were mostly adjacent to developed open areas in low-density develop-
ment, the watersheds typically had a low IJI of developed area and high
TP and E. coli concentrations. This phenomenon might be attributed to
the application of phosphorus-based fertilizers on lawns in low-
density residential areas (Wilson, 2015).

4.3. Planning implications based on urban development pattern metrics

In this section, we discuss urban planning implications based on
urban development pattern metrics using sample watersheds in the
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study region. Two pair-wise comparisons of land cover maps with sim-
ilar percentages of developed areas but different TP and E. coli concen-
trations were shown in Fig. 5. The watershed #12083 (Fig. 5-a) was
identified as havingmore aggregated development, with a relatively in-
tegral natural core in the west. The IJI of developed area in this water-
shed was larger because the developed area was more equally
adjacent to other land patch types. The watershed #11155 (Fig. 5-b)
had low density development with scattered developed open areas.
The IJI in this watershed was small because the developed area was
largely adjacent to the developed open area only. Greatly interspersed
land uses accelerated soil erosions and caused the increase in pollutants
(Shi et al., 2013; Sun et al., 2013). Specifically, for watershed # 11155,
high TP and E. coli concentrations could have resulted from landscape
gardens in the developed open areas and the greater extent of road sur-
face area associated with detached houses (Goonetilleke et al., 2005).

The comparisons between watersheds in Fig. 5-c and -d showed
how edge complexity potentially affected pollutant concentration. Dif-
ferent edge complexity was associated with different drainage connec-
tions and road systems that influence runoff velocity, pollutant travel
Fig. 5. Examples of watersheds with the similar percentage of developed areas bu
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distance, and time of transport (Liu et al., 2012). A higher ED of devel-
oped areas in the watershed #17406 (Fig. 5-c) was found to be associ-
ated with higher TP and E. coli concentration than in watershed
#11405 (Fig. 5-d), given the similar percentage of developed areas.
The complex shape and sprawled development of watershed #17406
led to more interspersed land uses and higher road density that might
generate more nonpoint source pollutants. It also degraded the struc-
ture of natural systems that were important for filtering pollutants
(Lee et al., 2009).

Urban development pattern metrics are related to percentage, ag-
gregation, patch shape, and connectivity of developed areas, and thus
can represent characteristics of urban sprawl like low-density develop-
ment, leapfrog development over vacant lands, and decentralization
(Riitters et al., 1995; Gordon and Richardson, 1996; Ewing, n.d.;
Bhatta, 2010). We argue that urban sprawl has a direct relationship to
stream water quality, as it affects pollutant generation, build-up, and
wash off by altering the structure of urban forms and the surrounding
natural areas (Goonetilleke et al., 2005; Liu et al., 2012). We suggest
that urban form for stream water quality protection should avoid:
t different urban development pattern metrics and pollutant concentrations.
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(1) sprawl of low-density developmentwith large lawn areas and com-
plex road systems (Fig. 5-b) and (2) complexly shaped and scattered
patches of urban areas that are likely to have complicated road systems
and destroy integral natural areas (Fig. 5-d). To further justify this rec-
ommendation, future studies should measuremore planning indicators
related to urban sprawl, such as the layout of residential areas and the
fragmentation of natural areas, to investigate how they affect stream
water quality.

4.4. The advantages and limitations of applyingmachine learning in stream
water quality scenario prediction

We integrated urban developed pattern factors and achieved the
state-of-the-art stream water quality predicting accuracy. In this
study, test set correlation between actual values and predicted values
was 0.83 and 0.82 for NO3

−-N in wet and dry seasons, respectively.
This result is comparable with Lek and others' research where test set
model correlation was 0.845 and 0.832 for total nitrogen and inorganic
nitrogen using an artificial neuron network (ANN) (Lek et al., 1999). In a
more recent research, NO3

−-N concentration was modeled with ANN,
and the test set R2 was 0.60 (Mirzaei et al., 2020), while our RF model
test set R2 was 0.69 and 0.68 for NO3

−-N in the wet and dry season, re-
spectively. Our test set model NSE was 0.61, 0.45, and 0.64 for TP,
E. coli, and NO3

−-N in wet seasons. In a SWAT review study, the average
NSE for monthly TP and NO3

−-N model in the calibration stage was 0.68
and 0.54, respectively (Gassman et al., 2007). However, given the noisy
nature of this large-scale dataset, there was still risk that themodels did
not fit the data well, whichmight undermine the results of the scenario
prediction. If we could obtain a larger sample size or apply transfer
learning, this issue could potentially be addressed. In addition, adding
more influential factors could also improve model fitting. For example,
there might be other factors affecting E. coli concentration besides cli-
mate and land cover characteristics (Chelsea Nagy et al., 2012). As the
advancement of machine learning algorithms, it is promising for future
study to predict contaminant concentration under the future land use
planning scenarios if the machine learning model fits data well.

As mentioned in previous studies, a key gap in water quality studies
has been a lack of consideration of cross effects between explanatory
variables, such as the cross-correlation between land covers and the
cross-correlation between land cover and climate in influencing stream
water quality (Li et al., 2015; Hwang et al., 2016; Lintern et al., 2017).
Machine learning can make use of all cross effects between variables
and improvemodel predicting accuracy,which is an advantage over tra-
ditional statistical models. For example, it is likely that climatic factors
exhibited interaction effects with urban development pattern and
other environmental variables on stream water quality, and the
predicting accuracy can thus be improved. Another advantage is that
RF regression can accommodate high-dimensional factors to improve
water quality prediction accuracy, e.g., the inclusion of a monthly cli-
matic variable in this study. It is applicable for future research to inte-
grate a set of planning factors and/or extreme climate conditions to
draw management implications of interest.

The major limitation of this study was that some catchment charac-
teristics were excluded because they were not readily available. Such
variables included point source pollution, animal products, wastewater
treatment plants, and so on (Chen and Lu, 2014; Zhou et al., 2016).
These data were excluded because they had much lower resolution
than the variables included in this study. Future machine learning pre-
dictions of stream water quality should take these important aspects
into consideration, if applicable, in order to obtain more unbiased
models. Another limitation was the selection of appropriate variables.
In this study, we conducted trials of variable selection in the RF regres-
sion using mutual info regression (Kraskov et al., 2011), but the RF re-
gression accuracy did not significantly improve. Future studies should
also try other feature engineering algorithms, such as recursive feature
elimination. Additionally, we only included one year of data because
11
land cover did not change drastically in this region, nor did the urban
development pattern. Future studies should adopt a longitudinal per-
spective when the change of the urban development pattern is of inter-
est. Lastly, this study focused primarily on urban development pattern.
It would be meaningful to compare urban and agricultural areas with
respect to how landscape-level pattern influences streamwater quality.

5. Conclusion

Urban development pattern was found to significantly influence
stream TP, NO3

−-N, and E. coli concentrations in the Texas Gulf Region,
with the relationships among them varying according to season and lo-
cation. Largest Patch Index (LPI), Patch Cohesion Index (COHESION),
Splitting Index (SPLIT), and Landscape Division Index (DIVISION) of de-
veloped areas were the most efficient urban development pattern met-
rics associated with stream water quality. Interspersion and
Juxtaposition Index (IJI) and Edge Density (ED) of developed areas
were also important for specific pollutants and seasons. The influence
of urban development pattern on stream water quality was larger in
wet seasons than in dry seasons. According to the GWR results, the ef-
fects of urban development pattern were different according to geo-
graphical locations and pollutant categories because of the different
pollutant sources and transportation processes.

It was predicted by RF regression that high-density aggregated de-
velopmentwas themost effective in reducing TP andNO3

−-N concentra-
tions compared to medium-density development and the current
sprawl development. However, aggregated development contributed
to E. coli pollution in wet seasons. To conclude, this study demonstrated
the environmental consequences of urban sprawl and supported policy
orientation towards compact city planning according to the machine
learning predictive framework.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.144057.
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