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Abstract

We examine methods for detecting and disrupting electronic arc faults, propos-

ing an approach leveraging Internet of Things connectivity, artificial intelli-

gence, and adaptive learning. We develop Deep Neural Networks (DNNs) taking

Fourier coe�cients, Mel-Frequency Cepstrum data, and Wavelet features as in-

put for di↵erentiating normal from malignant current measurements. We further

discuss how hardware-accelerated signal capture facilitates real-time classifica-

tion, enabling our classifier to reach 99.95% accuracy for binary classification

and 95.61% for multi-device classification, with trigger-to-trip latency under

220ms. Finally, we discuss how IoT supports aggregate and user-specific risk

models and suggest how future versions of this system might e↵ectively supervise

multiple circuits.

Keywords: Emerging applications and technology, intelligent infrastructure,

ambient intelligence, embedded intelligence, distributed sensing, arc fault

detection, real-time

1. Arc Detection Matters1

Electrical circuits harbor silent and serious risks. Conductors flex, break, and2

oxidize; insulation abrades, and interconnects, switches and terminals degrade.3

Wires are routed in hard-to-inspect areas between walls, ignored until problems4
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manifest. One such problem is arcing, an unintended, luminous and sustained5

discharge of electricity in conductive, ionized gas between two regions of varied6

electrical potential.7

Arcs may be series or parallel. Series arcs occur when a conductor is un-8

intentionally broken, e.g. from a loose connector, a poorly-made splice, or an9

accidental nick or cut. Parallel arcs occur between hot and neutral or ground, or10

neutral and ground. Though parallel arcs burn hotter, series arcs have the po-11

tential to burn between 5, 000 and 15, 000�C[1], expelling molten liquid capable12

of starting fires.13

Since 1998, specialized devices called Arc Fault Circuit Interrupters (AFCIs)[2]14

have helped mitigate fire risks. These systems interrupt faulty circuits, but err15

on the side of over-sensitivity, disconnecting benign devices like vacuums or16

computers. We propose leveraging advances in sensing, connectivity, inference17

and action in order to build an intelligent, cost-e↵ective Internet-of-Things en-18

abled arc-fault detector capable of learning new definitions, similar to a virus19

scanner.20

To prove this concept’s feasibility, we examine low-power, AC series arcs,21

which provide worst-case training data. AC faults are di�cult to classify because22

the circuit’s connected load limits the arc’s maximum current[3, 1], reducing the23

signal-to-noise ratio. Series faults pose a high likelihood of confusion with benign24

appliances such as DC motors, and by testing with low-power circuits, (< 15A25

@ 120VAC), our algorithms will readily extend to higher-power arcs.26

This paper proposes fault detection using an adaptive deep neural network27

trained using real data. Such a system provides a future-proof and scalable28

system for arc classification, maintaining sensitivity while reducing unintended29

interruptions. Connectivity allows device and fault “definitions” to be aggre-30

gated at scale, while on-board computation and connectivity enables operating31

characteristic measurements and remote control. More than describing a smart32

AFCI’s implementation, however, this paper highlights the opportunity latent33

in bringing AI and connectivity into “mundane” devices, such as those found in34

infrastructure.35
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2. Existing Arc Detectors36

Contemporary arc detectors leave much to be desired from the perspective37

of cost, immunity to false positives (unnecessary interruption), response time,38

and upgradability.39

AFCIs may rely upon analog circuits, application-specific integrated circuits40

(ASICs), field-programmable gate arrays (FPGAs), or optical and electromag-41

netic techniques to detect arcs. Device sensitivities and reaction times (25-42

250ms) vary[4, 5].43

Low-cost analog detection is most prevalent, but it su↵ers from high false44

positive rates[3, 6]. Mechanical approaches are initially more reliable, but costly45

and degrade over time[6].46

Algorithmic detectors face di↵erent challenges. Arcs are dynamic, and de-47

tection e�cacy varies as the cathode erodes[2]. Appliances may share charac-48

teristics with arcs, including current shoulders, a change in amplitude, or an49

increased rate of current rise[2], leading to misclassification.50

Some arc detectors utilize machine learning to improve classification accu-51

racy. For example, researchers have applied neural networks to identify abnor-52

mal operation without a priori arc models. These approaches yield between 95%53

and 99% accuracy using small feature vectors for training and testing, though54

it is unclear how resilient these approaches are to nuisance detection[7, 8, 9].55

More generally, algorithmic arc detection is a form of dynamic process tran-56

sient fault detection. Roverso (2002) describes one approach to dynamic fault57

detection using bagged recurrent neural networks, windowed wavelet feature58

generation, and task (fault) decomposition[10]. However, this approach might59

require costly hardware to deploy in real-time.60

Hidden Markov Models (HMMs) learn time-dependent spatial and temporal61

patterns to identify state transitions from normal to abnormal plant opera-62

tion. [11] Similar HMMs identify individual appliances from combined electri-63

cal loads, but require supervised model creation and long inter-state transitions64

not conducive to the fast (> 1Hz) realtime operation required to protect against65
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arc-related fires[12].66

Computer-controlled AFCI’s running these algorithms may rely upon fea-67

tures including Fourier coe�cients, wavelets, and use techniques such as band-68

pass filtering to eliminate harmonics and baseline current from measurements[6,69

13, 14]. Other approaches derive features by correlating multiple information70

sources, for example by relating di↵erential current ( didt ) to absolute current (|i|),71

which improves separability of nuisance tripping from fault tripping. These ap-72

proaches may detect early arcing with up to 98% accuracy[15].73

Some AFCIs create additional value to drive adoption. Ming (2009) de-74

veloped a system using Controller Area Network (CAN) to connect sensors a75

single host computer for classification[16]. Koziy (2013) proposed integrating76

detectors into smart meters[17].77

Most AFCIs rely on predefined and immutable arc definitions, leading to nui-78

sance interruption. Developing an AFCI with adaptive and remotely-updatable79

definitions would provide additional utility relative to conventional approaches.80

Such an approach allows for common-Cloud signature aggregation to minimize81

nuisance disconnects while facilitating new insights (what’s plugged in?) and82

remote control (turning o↵ a stove while vacationing).83

3. Hypothesis84

Current waveforms di↵er between arcing and normally-operating circuits.85

Unlike the current traces from a resistive circuit, arc fault waveforms typically86

have shoulders because the arc does not flow current until su�cient voltage87

across the gap returns following a zero current condition (excitation and reig-88

nition). [1, 5]. Representative normal and arcing traces from an electronic89

stovetop and ozone (arc) generator can be seen in Figures 1 and 2.90

Listening to these signals as audio, we could di↵erentiate between resistive91

and arcing signals. We therefore hypothesized that audio processing techniques92

may be used to classify normal and faulty circuits. Audio-based classifica-93

tion has been successfully applied to the development of automotive diagnostic94
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Figure 1: This figure shows a typical smooth and periodic current trace for a resistive electrical

load.
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Figure 2: In this arcing current trace, note the shoulders as the electrical potential climbs

before creating an arc.

systems[18, 19]. However, these approaches rely on physical or statistical mod-95

els. Deep learning techniques might instead allow for normal and abnormal96
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classification without an a-priori hypothesis, and would scale to support the97

volume of data generated by connected devices.98

In the following sections, we test a neural network using audio features to99

identify circuit operating states.100

4. Experimental Setup101

Typical arc fault detector training data comprises arcs, nuisance trips, and102

normal circuits. Arc testing approaches including guillotine, carbonized path,103

wet arc, and loose terminals. Nuisance trip sources, designed to test false pos-104

itive rejection, include motor loads, dimmers, and computers [3]. For normal105

circuits, resistive elements are used.106

Earlier papers’ training and testing would provide a uniform baseline for107

evaluation but the data were unavailable. Further, these data sets neglect multi-108

state classification, which is a key capability of our solution.109

We instead generated data from an electric stove-top burner, an iMac com-110

puter, a fan, and an ozone generator. The burner simulates an ideal resistive111

circuit, the iMac switching power supply introduces noise, and the fan’s DC112

motor arcs by design. The ozone generator represents a continuous series fault,113

as it relies on a high-voltage discharge to cause an arc between two metallic grid114

plates, resulting in the continuous formation of O3.115

We validated the ozone generator’s similarity to real arcs by comparing116

its current traces to those found in the literature. Visual inspection of the117

time/current trace in Figure 2 shows a strong correlation to the point-to-point118

AC series arcing demonstrated in Li (2003) [3].119

We collected data from each device under real-world use to ensure that120

classification results depend not on signal amplitude or periodic features, but121

rather on invariant waveform “signatures.” In the case of the iMac, we rendered122

video; in the case of the burner, we varied target temperature and applied123

thermal loads to the heating element.124

Current data were recorded on a Raspberry Pi Model 3 microcomputer125
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via an MCP3008 10-bit analog to digital converter connected to a clamp-on126

current measurement meter, as show in Figure 3. Current can be measured127

non-invasively, allowing an airgap between logic electronics and measurement128

circuitry.129

An op-amp amplifies normal and inverted input signals from the clamp trans-130

former. The voltage proportionate to current input is reconstructed using the131

formula Vsig = VADC0 � VADC1. We calibrated the amplifier’s gain by loading132

the circuit to 15A and tuning a trim potentiometer to ensure that the analog133

input was used across its full range without saturation.134

Figure 3: This image shows the experimental setup for data collection (and later, for testing

real-time classification).

This setup sampled at 5.865kHz, limited by the Raspberry Pi’s SPI band-135
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width and timing jitter. The number of wire turns on the inductive pickup and136

the operational amplifier’s gain of 6.6x yielded a precision of 14.6mA of current137

draw per count. Each sample was recorded for at least 60 minutes to ensure138

su�cient training and testing data.139

5. Proof of Concept140

We treated classifier development as a supervised learning problem. This141

section describes feature generation and the design of a Deep Neural Network142

(DNN) for binary (normal versus arcing) and multi-state (device) classification.143

5.1. Feature Generation144

Each measurement was assigned a label based on device type, then split145

into chunks of 0.2 seconds to capture nearly 12 complete 60Hz AC cycles while146

allowing 50ms for classification and to mechanically switch a relay.147

Each chunk was RMS current normalized, and low amplitude signals (noise)148

were discarded to avoid classifying unloaded circuits.149

For each segment, we generated a feature vector in Python using SciPy,150

SkLearn, PyLab, PythonSpeechFeatures and PyWt. These features included151

the Discrete Fourier Transform (DFT) with a bin width of 5Hz and a maxi-152

mum frequency of 1.5kHz to avoid aliasing. The average FT magnitude in each153

bin comprised one feature, with all such features concatenated into feature set154

FDFT .155

In addition to the binned FT, we used Mel Frequency Cepstral Coe�cients156

(MFCC) to provide a spectral signature of the current. We generated 64 frames157

with 12 coe�cients, stored in FMFCC .158

We also created wavelet-based features by conducting a Discrete Wavelet159

Transform (DWT) using the Daubechies 4 wavelet at decomposition level 5.160

For each decomposition level, we computed mean, kurtosis, standard deviation161

and skewness features, concatenating each into a wavelet feature vector, FDWT .162
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Finally, these features were concatenated to form one vector comprising163

DFT, MFCC and DWT features (FALL = FDFT kFMFCCkFDWT ) for each sam-164

ple current measurement, where k represents vector concatenation.165

The use of FT, DWT, and MFCC was chosen for its e�cacy in diagnosing166

automotive faults[18, 19].167

5.2. Initial DNN Model168

To test neural networks’ viability on constrained hardware, we implemented169

a DNN classifier. Bringing “intelligence to the edge” allows durable goods and170

infrastructure devices to adapt in the face of new data, and DNNs do not re-171

quire excessive engineering, even for multi-state classification which non-linear172

separability.173

We implemented a fully-connected DNN in TensorFlow. The model takes as174

input the generated 1D vector FALL, and outputs a probability distribution over175

predefined classes. In our experiments, we found that a model comprising three176

hidden layers with the number of neurons being 16, 32 and 16, respectively,177

works well. The model architecture is visualized in Figure 4.178

All the three hidden layers are Fully-Connected (FC) layers: each neuron179

connects all the neurons in its previous layer with learnable weights. The re-180

sponse of a hidden layer unit is calculated by summing over the product of each181

input signal and its corresponding weight, and passing the summation through182

a Rectified Linear Unit (ReLU). For the output layer, Sigmoid function is used183

as the activation function for the binary classification case, and the Softmax184

function is used for multi-state classification.185

This model used the Adam optimizer with a learning rate 0.001.[20] The186

batch size was 64 signal segments. We calculated the cross entropy between187

ground truth labels and predicted logits as the training loss and used L1 regular-188

ization to further reduce model overfitting. We randomly split data chunks into189

two sets to avoid time dependence, keeping 80% for training and 20% for testing.190

We had a large sample size, so did not perform multi-fold cross-validation.191

For testing, we deployed the testing script with pre-trained model parameters192
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Figure 4: The input to the DNN is a 1D vector comprising FDFT kFMFCCkFDWT . The

model has three hidden layers, with 16, 32 and 16 neurons. The model generates a probability

distribution over predefined classes to determine normal versus abnormal circuit operation, as

well as identifying specific outlet loads.

on an iMac. We further designed a multithread scheme for operation within a193

real-time application, where the classification task is implemented on a separate,194

non-blocking thread. This parallel design helped our prototype system perform195

with minimal data loss or delay.196

6. Early Results and Refinement197

This first DNN returned 99.98% classification accuracy on in-sample data198

using a one-versus-all approach (ozone [abnormal] versus all other input data199

[normal]). With a 0.2s data segment, these results represent classification on200

12, 357 unique events representing a roughly 30/70%, with the confusion matrix201

shown in Table 1.202

The false positive rate (good circuit reported as faulty) was 0.01%, almost203

eliminating nuisance trips. The false negative rate (bad circuit reported as good)204

was 0.05%, suggesting the algorithm may need tuning or biasing to minimize205

fire risk. The sensitivity (when an arc is present, how often does the algorithm206

detect it) was 99.95%, the specificity (when the circuit is safe, how often does the207
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Table 1: This confusion matrix shows the DNN’s binary (normal/abnormal) classification

performance.

Normal Arcing

Normal 8,674 1

Arcing 2 3,680

n= 12,357

Table 2: The confusion matrix for a DNN device identification algorithm for multi-device

classification.

Burner iMac Fan Ozone

Burner 1,284 5 11 11

iMac 9 3,553 109 12

Fan 5 135 3,539 2

Ozone 9 5 1 3,667

n= 12,357

algorithm detect this) was 99.99%, and the precision (when a fault is predicted,208

how often is it actually faulty) was 99.46%, demonstrating stellar performance.209

This improves significantly upon the 99% state of the art AFCI performance.210

Categorizing by device type, the DNN returned a four-class accuracy of211

97.46%. The resulting confusion matrix is shown in Table 2.212

From this matrix, one sees that that the in-sample performance for ozone213

(arc) detection is high, with 15 of 3, 682 samples (0.4%) misidentified, suggesting214

a high sensitivity relative to other classes that might be more easily improved215

upon.216

We then verified that the model could improve over time by incorporating217

15 minutes of additional training data from the same devices. The in-sample218

binary performance reached 100% accuracy, and multi-state reached 99.98%.219

We validated that the improved model was not overfit by running the classifier220

on 10 hours of data from an outsample non-arcing load, with no false positives.221
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6.1. Definition Updatability222

We then tested the ability of the model to dynamically update “definitions”223

for unseen device configurations by testing the previously-trained model on a224

circuit powering the fan and ozone generator in parallel. The model failed225

to detect the arc, so we collected additional training data and retrained the226

classifiers to include parallel devices.227

We retrained the model by starting with the already-learned weights and228

biases and introducing new data into the training set (a similar approach could229

be used for Cloud-connected AFCIs, which would learn new weight and bias230

definitions at a central location and deploy a “delta” over-the-air update).231

We changed the learning parameters to minimize overfit, reducing the batch232

size and learning rate and increasing the maximum step limit to ensure conver-233

gence with the smaller batches. In a future implementation, we will consider234

LeCun et al.’s work on “E�cient BackProp” to start with small mini-batches235

and increase size as training progresses to reduce model noise and to allow236

computation on more constrained hardware.[21]237

The lower learning rate reduces sensitivity to deep, narrow feature troughs238

and improves generalizability to outsample data, but requires running longer239

relative to a higher learning rate to avoid converging to a local minimum.240

Despite these changes, the model failed to di↵erentiate particular segments241

of the burner load from the arc load. This is because arcs tend to be low242

current, and the burner uses a bang-bang controller to modulate heat. When243

the load resistor is disengaged to allow the heating element to cool down, the244

burner becomes very low current, driving only an unloaded power supply and245

an indicator light. In these cases, the burner’s power supply demonstrates low-246

amplitude noise closely representing arcing.247

To address this issue, we reduced the training and realtime classification248

cuto↵ threshold from an RMS current value of 146mA to a value of 43.6mA,249

allowing classification of lower-amplitude signals. We then retrained the model250

again.251
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With these new models, the classifier performed reliably using prerecorded,252

outsample data. We were able to obtain 100% classification accuracy on 15 min-253

utes of samples from each represented state, with no false positives or negatives.254

This implement-then-update use case proves the value in having adaptively-255

learned models for fault classification: new scenarios can be added easily, and256

classifier performance improves as additional labeled samples are introduced into257

the training set. The network inherently picks the best-di↵erentiating features,258

so a network of AFCIs at scale will quickly lead to robust, generalizable load259

classifiers.260

7. Building Towards a Connected AFCI261

With batch processing proven, we sought to develop a real-time, IoT-enabled262

AFCI.263

The Internet of Things is key to learning and deploying new classification264

models, ensuring that real-world edge cases make it into training data. Ag-265

gregated fingerprints and centralized model training allows scalable Cloud re-266

sources to be leveraged by infrastructure with growing “embedded intelligence.”267

Connectivity and distributed computation allow constrained microcomputers to268

participate in on-line and adaptive learning, helping crowdsource classifier devel-269

opment and enabling remote control that incentivizes the installation of costly270

“smart” switches.271

The first step towards real-time arc detection was to implement the DNN272

on a low-cost, power-e�cient microcomputer. We began by testing the classifier273

on the same Raspberry Pi 3 from the experimental setup to capture live data,274

with the addition of a relay-controlled outlet to interrupt abnormal circuits.275

This relay had a nominal switching time of 5ms, but could be replaced by a276

faster (and costlier) solid state relay. The full system block diagram appears in277

Figure 5, and the schematic appears in Figure 6.278

The Raspberry Pi met our objective of being low-cost and power-e�cient.279

At $35 for the microcomputer and slightly more for supporting hardware, a280
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Figure 5: This block diagram shows the elements of the connected AFCI’s data collection and

outlet control system.

single Raspberry Pi with a four-channel MCP3008 could monitor four outlets if281

installed near a distribution box. The ongoing operating cost is also low – with282

a measured 2W draw, at 0.12c/kWh this would cost just $2.10 annually.283

The software required more adaptation for real-time use. While feature284

generation took 15ms, the classification initially took 7.5s for a 0.2s data sample.285

We worked with TensorFlow’s lower-level functions to load the graph to memory286

once in a persistent session, which sped classification up to 3ms. With a three-287

thread software implementation (a caller thread, a data collection thread, and288

a prediction thread), we were able to capture and classify data with zero signal289

loss. This architecture is shown in Figure 7.290

The resulting system took approximately 3ms for classification, 15ms for291

feature generation, and 10ms to trigger the solid-state power interruption relay.292

From a computation perspective, with a 200ms data sampling window, the293

total time from arcing to disconnection was bounded to 240ms or fewer, which294
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Figure 6: This schematic shows the MCP3008 ADC, a dual LM358 amplification circuit, the

CT sensor input, and the Raspberry Pi SPI interface connections.

Figure 7: This diagram shows a simplified process flow for arc fault classification.
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is competitive today’s AFCI’s.295

However, as we optimized the code we encountered new and di�cult-to-296

address challenges. While the batch-processed model demonstrated 100% re-297

liability on outsample data, realtime classification failed to trigger in a timely298

manner or at all. In the next section, we consider the di↵erences between clas-299

sifying real-time and post-processed data to identify the root cause.300

7.1. Software Challenges301

The Raspberry Pi does not run a realtime operating system, making deter-302

ministic timing impossible. We analyzed our “real-time” data and found that303

for a target frequency of 5865Hz, the system clock stability had a standard devi-304

ation of 3%, causing substantial frequency variation (176Hz). As the processor305

cores loaded with data acquisition, OS functions, and classification, the gener-306

ated FFT features su↵ered. This non-uniformity dramatically increased false307

positives and negatives.308

We attempted to address these issues by running a non-preemption OS and309

bit-banging SPI to reduce overhead. Despite these changes, the system overhead310

remained at odds with deterministic sampling and processing. GPU acceleration311

was also not an option, as TensorFlow does not support OpenCL. As a result,312

in the current implementation, the Raspberry Pi 3 is capable of either collecting313

data reliably or classifying accurately, but not both.314

8. Hardware-Accelerated Classification315

Unsatisfied with accurate classification only in post-processing, we developed316

optimized hardware in an e↵ort to stabilize the data capture clock and to free up317

CPU cycles for classification. We therefore implemented hardware acceleration,318

using a USB sound card to capture the input signal from the current sensor.319

Such devices are produced in volume and low-cost, and ideally suited to the320

type of data capture needed to classify electronic circuits.321
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USB sound cards feature integrated clock timing controllers, high-precision322

analog-to-digital converters, bu↵ered storage, and automated gain compensa-323

tion to simplify both the hardware and software necessary for data collection.324

The USB soundcard we used allowed sampling up to 48kHz at 16-bits of reso-325

lution, and enabled us to eliminate the ADC hardware, op-amp and dual power326

supply from the AFCI’s bill of materials, reducing cost and simplifying manu-327

facturability.328

With the hardware accelerator implemented, we tested classification on our329

existing models. We collected data at 48kHz and saved every 8th sample to ap-330

proximate our initial target sampling rate of 6kHz. The use of a USB soundcard331

significantly reduced CPU load during capture from 60% to 0.2%. These freed332

cycles made it more likely that the CPU could perform realtime classification.333

Further, the substantial reduction in CPU load and amount of remaining USB334

bandwidth mean that a single Raspberry Pi might be able to use several USB335

soundcards to simultaneously monitor multiple circuits (or, could use the left336

and right channels from a stereo soundcard to monitor two outlets from a single337

capture card). The new hardware setup is shown in Figure 8, with a block338

diagram shown in Figure 9.339

Using a dedicated sound card eliminates the need for threading, as the input340

signal is bu↵ered in hardware. The sound card stores a sliding window bu↵er341

of 0.2s worth of data (a single frame) and transmits it to the Raspberry Pi in a342

batch operation. Because the data transfer, feature generation and classification343

take under 0.2s, no data are lost and classification can take place in realtime344

without the need for multithreading.345

The data from the sound card had stable timing, so we took the opportunity346

to update the model parameters by collecting new data at 48kHz to allow for347

the possibility of richer feature generation,1 and downsampling the data to 6kHz348

based on our FFT features’ estimated maximum frequency.349

1The fully-sampled data are available to the community at https://doi.org/10.7910/

DVN/IFDIZ1.
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Figure 8: This image shows the experimental setup for data collection using a USB soundcard

for hardware acceleration.

Figure 9: This block diagram shows the elements of the hardware-accelerated connected

AFCI’s data collection and outlet control system.

We repeated the data collection process described in Section 4 and captured350

at least an hour and 15 minutes of data for each input type, and captured more351

data from the ozone generator to keep classes relatively balanced. We also took352

this opportunity to make changes to the model based on our observations about353

the impact each hyperparameter had on model performance.354
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Table 3: This confusion matrix shows the hardware-accelerated classification performance on

binary (normal/abnormal) circuit characterization.

Normal Arcing

Normal 21,599 1

Arcing 15 8,985

n= 30,600

We kept layer sizes of 16, 32 and 16 fully connected units with a learning rate355

of 0.001 and added a decay step of 1, 000 with a decay rate of 0.9, significantly356

expediting the model learning process. Based on the challenges we faced earlier357

with tuning the model, we also increased the batch size to 2, 048 to allow for358

improved model generalization.359

Using a grid search for optimization, we increased the DFT’s upper fre-360

quency limit to 2, 500Hz to create additional di↵erentiating features. We did not361

increase the feature limit to 24kHz to ensure quick computation and avoid sam-362

pling near the capture hardware’s upper limit, where jitter would have more im-363

pact. We used a floor of 40Hz to eliminate low-frequency components. The final364

feature vector length was nFALL = 607, comprising nFDFT = 491, nFMFCC = 96,365

and nFDWT = 20.366

Finally, we changed early-stopping to look for three consecutive increases367

in validation loss at points 100 steps apart, with a floor of 10 epochs. This368

minimized overfit.369

From the new model, we obtained the out-sample data confusion matrices370

for normal-versus-abnormal and multi-state classification appearing in Tables 3371

and 4:372

This model’s binary outsample accuracy is 99.95% with a false positive rate373

of 0.004% (once per 83 minutes). Device identification accuracy is 95.61% with374

a false positive rate of 1.8%. The model’s primary misclassification mode is375

between the fan and the burner, a non-malignant mistake. With continued376

supervision, these models could improve on-line.377
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Table 4: The confusion matrix for hardware-accelerated device identification.

Burner iMac Fan Ozone

Burner 3,612 0 867 21

iMac 0 5,400 0 0

Fan 371 0 11,302 27

Ozone 39 0 17 8,944

n= 30,600

Using hardware acceleration, we attained repeatable periodicity of 200ms for378

data capture, transfer, computation, and classification, making for an approxi-379

mate 220ms trip-to-trigger time when using a mechanical interruption relay. The380

power consumption slightly increased to 2.6W, resulting in a slightly increased381

annual operating cost of $2.72 at $0.12 per kilowatt-hour. With a di↵erent ASIC382

capturing 6kHz signals instead of 48kHz and Digital Signal Processing (DSP),383

we believe this can be reduced.384

In summary, the hardware-accelerated setup works reliably and e�ciently to385

di↵erentiate normal and abnormal circuits or to identify specific loads.386

More generally, we demonstrated the ability to learn new device signatures387

and to deploy computationally-intensive classification on constrained devices.388

Shifting artificial intelligence into commodity hardware is a significant step to-389

ward developing objects with true “embedded intelligence.” We hope this paper390

helps practitioners bring AI into increasing numbers of connected, low-power391

and low-cost devices, building a smarter, more interconnected future.392

9. Final Model Weights and Neuron Activation393

To determine whether our generated features are being used and therefore394

worth generating, we plotted each feature against its learned weight. Figure 10395

shows the first filter layer feature weights for the multi-state classifier. The396

x-axis indicates the feature, while the y-axis indicates di↵erent neurons. The397

weights are represented using the color bar on the right hand side.398
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Figure 10: This figure shows the first layer feature weights for the multi-state classifier, plotted

by feature vs neuron number. The weights are color coded using the scale on the right side.

Note that while most weights are near 0 as expected, we see significant399

weighting of certain features. This is particularly true for the DFT features,400

which are the most utilized, followed by the MFCC features. These DFT fea-401

tures cluster into a few bands, with wider banding and heaver weights towards402

the higher frequency region (the right-most DFT features). Few DWT features403

have significant weighting.404

In Figure 11, we show the activation results beyond the first layer for ran-405

domly selected samples from the burner, fan, iMac, and ozone generator. Note406

the similarities between the burner (pure resistive load, [a]-[c]) and the fan (DC407

motor with minimal commutator arcing. [g]-[i]).408

10. Conclusion and Outlook409

We successfully demonstrated a real-time implementation of a DNN for arc410

fault detection on constrained hardware. This approach exceeds the accuracy411

(99.95% vs. 99%) of commercial and academic AFCIs and matches their latency.412

In future iterations, we will implement a decaying learning rate to limit413

model learning computation time, allowing constrained nodes to locally adapt414

while awaiting fresh “master” signatures from the Cloud. We will also explore415

whether feature ranking[18] can improve robustness while requiring a subset of416

features that can be generated more e�ciently.[22] In the near term, we will417
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Figure 11: These images show the activation function for three random samples of each device

class. (a)-(c) represent a pure resistive load (the burner), (d)-(f) represent the iMac’s switching

power supply, (g)-(i) represent the fan, and (j)-(l) represent arcing.

examine the classifier’s sensitivity to window size, which could improve model418

accuracy or reduce classification time.419

As our next steps, we will modify the algorithm to adaptively learn and to420

support over-the-air updates on a separate thread, so devices that cause nuisance421

trips (switch-mode power supplies, DC motors, and similar) can be identified422

and the likelihood of inadvertent interruption reduced.423

There are opportunities to reduce system cost while improving functionality.424

Adding a second current sensor will allow the same device to detect parallel arcs,425

as well as to support ground-fault detection. With additional sound cards, mul-426

tiple circuits may be monitored from a power distribution box. Software tweaks427

will allow outlets to be controlled remotely, improving homeowner convenience.428

Another area for exploration is user-specific risk tolerance models. Even at429

a high accuracy, the system may generate a false negative sample (reporting430

“normal” when the system is actually “abnormal.”) In this case, the device431

could trigger on the next-detected “abnormal” event, or, based on the user’s432

preferences, wait for a set number of consecutive abnormal events or events433

within a timespan to disconnect the circuit. Risk models could be derived from434

aggregate data and actuarial tables, dynamically updated. A user could be435

notified of heightened risk through a mobile application when a single fault is436
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triggered, choosing to override interruption while assuming liability for damage.437

Smart AFCIs will become valuable data collection tools, helping precisely438

identify the signatures of electronic devices while generating house- or city-wide439

data useful for mapping power consumption, identifying maintenance needs, and440

more. Our hope is that once end-users realize the value of embedded intelligence,441

that such techniques will find their ways into all aspects of life, starting from442

mundane devices.443
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