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Abstract—Tank-style water heaters provide a critical utility
but often waste energy. The trivial solution of idle shutdown
encourages the formation of bacteria harmful to humans. We
develop a system capable of learning and anticipating demand
proactively while remaining sensitive to health concerns by com-
bining a predictive autoregressive network capable of modeling
hot water flow demand with a Cognitive Supervisor designed to
minimize Legionella formation with minimal energy expenditure.
We developed low-cost computing hardware to capture sensor
data and run a predictive model and train it on real-world water
flow data captured from a single home over eight months. This
system has the potential to save energy in home and commercial
applications without compromising health, and may be used to
augment new and incumbent water heater installations in low to
middle-high income countries.

I. MOTIVATION AND OPPORTUNITY

Hot water is a high-priority utility[1] critical to safety and
comfort, though overheated or underutilized hot water wastes
energy. Water heating consumes 15% of electricity and 25%
of natural gas in the U.S.,[2] and in excess of 22% of energy
in Canadian households[3], [4]. Low prices drive adoption of
inefficient tank-style systems (97% of the U.S. market[5]),
with a New Zealand study finding 34% losses for electric and
27% for gas systems. Plumbing design also impacts standby
and distribution losses, which may reach 1, 200 kWh/home/yr
[3], driving economic and environmental costs.

Proactive shutdown during low-use periods reduces energy
expenditure and cost, but accelerates the formation of malig-
nant Legionella bacteria. Legionella can harm residents of a
single home, with risk amplified within industrial water distri-
bution systems and communal living environments including
hospitals or nursing facilities[6].

Excess energy use, insufficient hot water, and tainted plumb-
ing pose significant problems in low to upper-middle-income
economies. Storage-type water heaters could be improved
with a model-predictive, health-conscious controller capable of
anticipating hot water demand or identifying bacterial growth
conditions and modulating the supply to match predicted
demand or to create a bactericidal environment. Accurate
matching could eliminate the need for costly mixing valves,
while designing the algorithm to operate on low-cost con-

trollers could unlock access to emerging markets with less-
abundant energy and heightened cost sensitivity in addition to
augmenting the controllers on the substantial installed base of
tank-style heaters in upper middle-income countries.

In this article, we develop a self-learning water heater
control algorithm capable of anticipating flow demand and effi-
ciently and proactively heating water while remaining sensitive
to Legionella formation. We create a home-specific water con-
sumption model to accurately predict hot water flow, helping
ensure water is optimally heated to maximize comfort with a
minimum of excess energy expenditure. We further envision
a context-aware watchdog sensitive to bacterial growth condi-
tions and pair this system with the demand prediction model
to form a “cognitive supervisor,” using Legionella growth
patterns and long-timescale predictions to identify where the
minimum input energy elevates the water temperature beyond
the critical heating point required for curbing or reversing
bacterial formation.

We begin with an exploration of prior art in Section II, detail
our proposed solution in Section III and describe our data
collection system and potential heater controller in Section IV.
The control algorithm is proposed in Section VI and results
are shown in Section VII.

II. PRIOR ART

Energy may be conserved by reducing water temperature
during low use[7] or through electronic demand projection[8].
Another solution is manual heat modulation, though individu-
als often inaccurately estimate their consumption and continue
to over-heat water (cold showers cause more immediate suf-
fering than slow-accruing energy bills).

On-demand tankless heaters provide a hardware solution for
energy reduction without compromising comfort, [9] though
these systems are costly and poorly-suited to low-income
economies. While low-cost, localized heating has been envi-
sioned to provide on-demand hot water for showers in these
regions, power requirements limit adoption[10]. In contrast,
there is a large addressable base of inexpensive storage water
heaters around the world.



Studies have found water consumption to be varied across
geographies but repeatable at a local (home) scale, suggesting
that personalized energy management could yield savings[11].
Schedule automation saves energy[12], though sudden demand
spikes may go unmet due to water’s high heat capacity.
Theoretical savings suggest a 14.7% energy reduction us-
ing a timed system[12]. Heaters may use real-world data
for optimization[13] or predictive load scheduling[14], [15].
Utility-level control has also been proposed to reduce peak en-
ergy demand,[16] along with centralized heater demand man-
agement and direct-load control programs [17], [1]. Predictive
modeling has been evaluated[11], with some models using
date/time aware filter-based models to forecast demand[17].
These approaches may increase the risk of Legionella and are
not recommended for those with compromised health[18].

Heat is a factor in the growth of Legionella bacteria, with
temperatures near 25◦C accelerating growth [19] and temper-
atures > 60◦C decreasing Legionella formation[6]. Setting a
water temperature floor of 60◦C imposes a high minimum
energy cost, while intratank temperature variability means the
outlet temperature may be higher[20], increasing scalding risk.
Conventional scheduling struggles to balance energy savings
with comfort, adapts poorly to unexpected use, and neglects
bacterial development considerations.

Recently, Booysen, et al. proposed techniques to modulate
water heater energy input based on temperature matching,
energy matching, and energy matching subject to bacterial
growth constraints. Energy Matching with Legionella (EML)
prevention matches tank outlet energy with demanded hot
water energy by varying water temperature and flow rate. In
this approach, water is heated to 60◦C for 11 minutes at
least once per day, just before the largest predicted outflow
event[21]. Results for Energy Matching (EM) show a median
energy reduction of 17.8%, whereas the EML with sterilization
heating yielded 13.1% savings, both with no increase in
perceptable “cold events,” or insufficient hot water noticeable
to consumers. The EML approach attains minimum energy
expenditure in cases where large outflow events are directly
correlated to the most significant water energy use, but this
may not be optimal when large outflows of hot water are
mixed to reduce the temperature (e.g. a tepid bath). A system
capable of predicting true, at-the-tap energy demand may
further reduce energy consumption by precisely timing the
sterilization event, and allow improved efficiency in timing
the Legionella sterilization event.

A context-aware, energy demand-based scheduler for exist-
ing tank-style water heaters has the potential to save energy
without compromising safety or comfort. Such a system would
anticipate demand for hot water, and predict far enough into
the future to identify whether the demand would intrinsically
cause the system to exceed the sterilization temperature for
Legionalla, and if not, where the smallest additional of extrin-
sic input energy will cause the system to exceed that limit,
assuring the safety of the water stored in the tank. Section III
describes our approach to creating such a system.

III. PROPOSED SOLUTION

Individuals are good at identifying water flow events but
poorly estimate events’ volume and duration [22]. Using real-
world sensor data, it may be possible to predict future demand
for both water flow rate and desired temperature.

A data-driven model could enable a hot water control system
capable of anticipating outflows to efficiently and proactively
modulate stored water energy to meet demand. Such a system
could replace incumbent data-blind controllers that over- or
under-heat water, and with the use of a proportional integral
derivative (PID) control, further address inefficiencies inher-
ent in these imprecise “bang-bang” hysteresis controllers[1].
By integrating a predictive algorithm and improved control
hardware into existing heating systems, a more advanced
controller could imbue incumbent infrastructure with machine
intelligence at minimal cost. This approach would improve
energy efficiency by matching hot water supply to demand,
but would do little to ameliorate the safety concerns resulting
from under-heated stagnant water.

Contextual rules could help to address the issue of bacterial
growth to assure the safety of heated water. Rules known to the
controller could identify conditions where bacteria formation
is likely and trigger actions proactively to mitigate and reverse
formation of bacteria. For example, the system might identify
that water has recently exceeded the sterilization temperature
for Legionella bacteria, and that it is safe to cool down to
ambient temperatures as scheduled. In another scenario, the
system might identify that the system is projected to idle with
cold, stagnant water long enough for Legionella to grow, and
as a result might explore opportunities for bacterial growth
reformation (release of a treatment agent, or the addition of
extrinsic heat to cease further formation).

Combining the elements of data-driven demand prediction,
proportional heat control, and context-aware safety, we pro-
pose a learning, demand-responsive, Internet-connected energy
control system for low-cost storage water heaters. Learned
models anticipate demand to proactively heat water, as sug-
gested in [23]. Atop this model, a “Cognitive Supervisor”[24],
[25], [26] understands the the water heater’s purpose (hot water
delivery on demand) and its constraints (human susceptibility
to and growth factors for Legionella bacteria) in context. This
Supervisor is part of a Cognitive Protection System capable
of monitoring system states to ensure adequate performance,
and is uses similar models to a “Cognitive Firewall” capable
of testing commands received over the Internet for benignness
prior to execution[24], [25], [26].

The proposed heater control system uses real world data to
learn demand models, and projects demand forward in time
in order to make schedule modifications minimizing energy
consumption while meeting demand requirements and obeying
safety rules. This approach utilizes embedded intelligence
to improve system efficiency and safety, building upon the
efficiency and safety benefits realized by prior pervasive
infrastructure computing implementations[13], [27].

Wi-Fi connectivity allows homeowners to view realtime



consumption data over the Internet, as 9% of energy con-
servation stems from energy awareness, [22], [13], [4] and
idle energy use may go unnoticed if not brought to the
consumer’s attention. Networking further allows the same
controller replacement to be used for remote Internet control,
for example, for a utility to manage resource consumption
to reduce peak grid load, or for a homeowner to increase
water temperature when freezing conditions are expected. The
aforementioned Cognitive Firewall may be used to not only
monitor locally-issued commands, but also to address resultant
security concerns, simulating commands in context to assure
their safety prior to execution on physical hardware.

With Internet connectivity, automated water heating may
be controlled by models learned from home-specific data,
stored online and combined with weather data, student athletic
schedules, or coupled with other external sources useful for
improving predictor performance.

Our demand-responsive hot water heater builds upon estab-
lished technologies and consumer desire to create an efficient
and safe solution to making water heating demand-predictive.
Consumers will appreciate the cost savings and environmental
benefit of energy efficient devices, and the concept of adaptive,
demand-based home heating has been widely adopted (e.g.
the Nest thermostat) with other demand-based appliances in
testing[28], [13].

What differentiates this concept from the earlier-described
utility- and demand-side proactive heating systems is direct
connectivity, adaptive home preference models, and context
awareness which improves system energy savings without
compromising safety. Further differentiating this from the
proposed concept of EML[21] is that the sterilization event
may be timed precisely to minimize energy consumption,
rather than in advance of the largest outflow event, which may
not match the peak energy demand - particularly after mixing.

Section IV follows, describing the hardware solution used
to capture model training data, and that may be used in the
future to replace existing water heater controllers.

IV. EXPERIMENTAL SETUP

Hot water demand varies with mitigating factors including
temporal, climate, regional, and cultural differences[22], but
demand is largely predictable within a single home. We
therefore developed a proof-of-concept system capturing hot
water flow data from, and modeling behavior within, a single
home. In this article, we consider flow as a surrogate for
hot water energy in part to simplify the experimental design,
and in part because energy modeling and matching is well
described in [21]. The primary contribution of this article is the
combination of the demand predictive model with the context-
aware safety elements and Internet connectivity rather than the
creation of a highly-precise energy model.

To capture flow data, we built an Internet of Things flow-
metering system using a low-cost Raspberry Pi 3B microcom-
puter which serves as a data logger and web interface. Our
sensing system employs inexpensive Hall-effect flow meters to
capture consumption data useful for creating demand models.

Though the Pi 3B was used primarily to capture training
data for demand modeling, the microcomputer was chosen also
for its ability to serve as a replacement hot water controller
able to locally operate the predictive model. The Pi 3B offers
analog and digital outputs capable of triggering solid-state
relays or variable solenoid valves, which can directly modulate
electric and gas water heaters as envisioned in Section III. The
Pi 3B also outputs SPI, I2C, PWM, and analog signals, which
easily interface with the power electronics or control systems
found in most other existing heater controllers.

Though the Pi 3B is a low-cost, low-power computer, it
features multiple cores and can learn new or adapt existing
neural network models locally as a background process. While
the system is designed to meet stringent cost and power
requirements, it also has sufficient processing to run pre-
trained Deep Learning models onboard. The Pi 3B has already
been shown to be an effective endpoint device for running deep
learning models for embedded intelligence[27].

Local operation allows lower latency for the controller,
improving energy efficiency relative to delayed commands
received from a remote Cloud or Edge solution. Alternatively,
the Pi can share data with a remote server in order to more
rapidly learn individual and aggregate home’s models, with
the server returning pretrained binaries to each end device.

The data collection and control system is shown in 1- 3.
While we incorporated multiple hall-effect flow sensors to
collect data for future water consumption studies, the models
developed in Section VI consider only the data from the
hot water tank’s outflow rate sensor. Multi-outlet instrumen-
tation would be costly[22], so using fewer sensors is better
representative of systems suitable for low-income countries.
In the U.S., consumers already own single-point connected
flow sensors (Moen Flo) that may be leveraged as input to
this system, indicating a consumer willingness to install such
devices in their homes and potential secondary applications
for flow data.

Fig. 1: The system uses mechanical water flow meters sending
pulses to a Raspberry Pi 3B for counting. We only use data
from F1, the hot water tank outlet, as it supplies the whole
house.

Flow data are captured to the Pi as the impeller turns and
are recorded to a file once per minute. While low-flowrate
events might be missed with infrequent sampling, larger events
driving demand for hot water such as bathing, laundry, and
cooking, which compromise the largest outflow in most homes,
show up clearly in the data. Bathing leads by volume (40%
of total water usage) and cooking leads by number of discrete
events.[22] The low flow rate reduces controller energy con-



Fig. 2: Each sensor is wired directly to the Raspberry Pi for
pulse counting.

Fig. 3: The control box appears on the left-hand side; a
representative flow sensor (F1, hot water outlet) is shown on
the right hand side.

sumption, data storage, and network bandwidth requirements
relative to faster sampling.

As noted at the beginning of this section, this experimental
setup considers flow as a surrogate for water temperature,
which itself is integrated over time and used as a surrogate
for energy. While this is an abstraction, it stands to reason
that water must be heated only in advance of an outflow
event. This is consistent with the collection methodology
in [22]. In future iterations, the addition of data from cold
water flow sensors and/or temperature sensors may develop
a more accurate, heater-specific relationship between flow,
temperature, and energy at all points in the system, similar
to the temperature, flow, and system models proposed in [1],
[29], [3]. With an improved heater model, it may be possible to
build predictive models capable of meeting hot water demands
even more efficiently.

The data collection process and sample plots are shown in
Section V.

V. SAMPLE DATA

Data were collected from the experimental setup once per
minute from January 18, 2018 to August 15, 2018. Once per
minute was selected as being an appropriate window size to
allow for the capture of small outflow events (≥ 2m) while
remaining resilience to timing jitter during data capture and
keeping storage, computation, and networking requirements
reasonable for the Raspberry Pi 3. Due to intermittent device

inaccessibility due to power or network interruptions, there
were sporadic data outages as might be present in a real-world
system.

To validate the data collection system’s performance, we
plotted hot water consumption by day (Figure 4) and by hour
(Figure 5).

Fig. 4: Usage varies by weekday based on the family’s activi-
ties. Water increases on Tuesday, Wednesday, and Saturday
due to exercise, whereas water consumption decreases on
Thursday, when the family eats dinner out.

Fig. 5: Usage varies by time of day based on the family’s
activities. Overnight hours show reduced water use, with
heightened use in the morning and around mealtimes indi-
cating bathing and cooking events.

In the data, we notice weekly and hourly trends that agree
with the family’s behavior. For example, water consumption
increases on Tuesday, Wednesday, and Saturday due to the
family’s exercise-related showering, while consumption drops
on Thursday as the family eats dinner away from home.

While additional data would be desirable to develop a com-
mercial product, with seven months of information, there were
sufficient data to begin developing a house-specific heating
model considering weekly and seasonal variation. Further, the
predictive element of this model has been proven effective for
water heaters, thermostats, and other utility controls. These



data are therefore sufficient to develop a simple predictive
model in order to test the novel contribution of a context-
aware supervisory system to limit bacterial growth.

The prediction model and safety-centric Cognitive Supervi-
sor are described in Section VI.

VI. CONTROL ALGORITHM

The control algorithm has two elements: a predictive model
to anticipate future outflow events (as a surrogate for energy
demand) and a Cognitive Supervisor considering Legionella
risk and adapting the tank’s commanded temperature to reduce
bacteria formation with the minimum increase in energy
consumption. It is the combination of these two elements
(anticipatory demand modeling and context-aware, energy-
minimizing safety systems) that makes our proposed solution
unique. The following subsections describe the design and
development of each of these elements.

A. Prediction Model

The prediction model’s purpose is to anticipate water out-
flow events. The proposed algorithm is structured in the form
of a regression model, using data from a single home’s hot
water tank outflow history as input to estimate future outflows.
While the described model in this section considers the rate
and volume of outflow events rather than temperature or en-
ergy considerations at the heater, flow is a reasonable surrogate
metric to prove model feasibility and to test the incorpora-
tion of the “Cognitive Supervisor.” Future variations of this
model may incorporate relationships between energy input and
thermal properties, with thermodynamic models learned from
water heating systems and relating heater energy consumption
with flow rate and temperature potentially enabling more
precise control and system-wide energy optimization.

1) Problem Formulation: To predict the water flow rate,
we designed an autoregressive Deep Learning framework that
ingests time series water flow data as input and returns a
prediction of the expected flow for the upcoming 24 hours.

From previous studies which identify trends in habitual
water use, we anticipate that future flow values will be highly
correlated to recently-preceding flow values and/or flow values
from similar times on previous days. Therefore, a critical first
step is to transform the data into a format better-suited to
capturing this potential correlation than conventional, less-
structured time series. By changing the data representation, we
may subsequently develop a more accurate model capable of
capturing patterns and predicting future flow values dependent
on time of day, day of weak, and seasonal effects.

To convert the data to a more robust representation, we take
the time series data points and construct an m×n matrix where
m is the number of days considered and n is the number of
flow samples per day. Only the most recent data fitting into
this space is used and data extending further back in time than
(m · n− 1) samples is excluded.

Given the nature of the data and the probable correlation
of samples to others in their local neighborhood, a Convolu-
tional Neural Network (CNN) model is an ideal choice for

the predictive model. CNN’s are well suited to learn filters
capturing latent correlation among data points related by time
(and, in the updated representation, space) than might be
extracted from a single-point time-series. Our model draws
inspiration from PixelCNN models [30] due to their ability to
capture the correlation among neighboring datapoints and the
autoregressive nature of our problem.

2) Training process: As a first step,
the data were split into training, testing, and validation sets
to avoid cross-contamination and overfitting. The most recent
20% of data were kept as outsample data for testing. The data
were split sequentially, rather than randomly, to capture the
inherent time-dependence of the data. Of the remaining 80%,
10% of the data were used for validation, while the remainder
were used for training.

The data were magnitude-normalized by dividing the train-
ing, testing and validation set by the highest value in the
training set (51.5864). Normalization leads to more stable
training dynamics and allows backpropagation to arrive at an
optimum more easily, resulting in faster training of the model.
The mean of the normalized training data were 0.001253, with
this low value for flow indicating that water remains stagnant
the majority of the time.

Due to data unavailability and sparsity resulting from sensor,
network, or computing outages, there were discontinuities
within the data i.e. regions in the data set where two con-
secutive samples were collected at times separated by hours,
days, or even weeks. In the sample house data, we found three
such discontinuous sections. In analysis, these sections of data
are treated as disparate segments in an effort to not confuse the
model with data that may be less-well-correlated than might
be expected by the model (a likely consequence of considering
all data as contiguous regardless of the existence of gaps in
the time series).

Unlike heating or cooling which are often active even when
homeowners are away, water is often stagnant within a home
due to the occupants being away or otherwise not engaging
with plumbing. In the case of our sample home, most of the
data points in the hot water flow time series were 0. As a
result, feeding data sequentially into most predictive models
would result in batches comprising solely of zero values as
input. Predicting future values from long periods of no-flow,
typical models would resort to the null solution of expecting
0.0 or very small values for the entire predicted time series. In
the case of our sample home, there were so many sequential 0
values that early attempts at modeling the data would output
only minuscule values for predicted flow independent of the
input series. While these highly-invariant models may work for
thermostats, they are less useful for anticipating water demand,
which is by nature “spikier” than other utilities.

To mitigate this challenge, when generating a batch of
training data, we select a segment with probability proportional
to the length of that segment. Then, a predefined constant
determines the percentage of “positive samples” (samples with
non-zero water demand at the timestamp to be predicted)
from that segment that will be included in the batch sent



Fig. 6: This figure shows the structure of our developed autoregressive network.

to the model as input. We randomly sample this percentage
of non-zero samples from the selected segment and fill the
remaining samples required for the batch labels/outputs with
zero-valued samples. The corresponding inputs that the model
should approximate the function for are created by taking
the preceding min(p,m · n − 1) (where p is the number of
values available before the sampled point) values of each of
the sampled points and performing the aforementioned input
transformation to create the corresponding m×n matrices for
each sample. These transformed m×n matrices are passed to
the model as batch inputs (Figure 6). This constructed batch
with the sampled outputs and corresponding created inputs is
then fed to the model for training, with the model attempting to
minimize the mean-squared error (MSE) between the predicted
time series and the ground-truth time series.

Fig. 7: Sample matrix outputs for a monotonically increasing
segment of length 20, 000 with interspersed zeros. Left: Note
in the case of the sample at index 6, 280, the data do not
fill the matrix and has zero values for the sections it couldn’t
fill (and beyond the timestamp at which prediction begins).
Right: In the case of the sample at index 11, 772, we see the
matrix is filled everywhere until the timestamp beyond which
the model makes predictions, due to an abundance of non-zero
datapoints relative to the model’s desired input.

For a concrete example, assume the training data contain
three segments of length 50, 1, 000 and 20, 000. When we
generate a training batch of size 32 from these raw data, we
are probabilistically most likely to pick the segment of length
20, 000. Assuming the segment of length 20, 000 is chosen
and the predefined constant is set to 15%, we first sample five
points within the segment that have non-zero values and then
sample the remaining 27 points from the zero-valued elements
in the segment to create a vector 32 elements long. The

combination of these sampled values comprise our training
input paired with the segment’s known output label. Assuming
that the model uses m = 7, and one of the points sampled was
at index 50 of the segment, we take the previous 50 points and
input transform them into the m×n matrix format. Similarly,
if one of the points was sampled at index 15, 000 but our
model can only look back in time by 7 · 1, 440− 1 = 10, 079
timesteps, we take the most recent 10, 079 points and convert
these into the m×n matrix format. These matrices are fed to
the model together with their corresponding output labels.

Figure 7 illustrates this subselection process by showing
sample matrices of dimensions m× n = 8× 1, 440 generated
from synthetic data.

During training, in the case where all preceding demand
values are zero, we construct the training batch labels by
randomly sampling from these zero values and feed the
samples into the model as outlined earlier. In the sample house
data, ∼12% of the water demand was non-zero valued and
therefore, given at least one day of historic demand data, we
never encountered a situation where we only fed zero-valued
batches to the model resulting in the prediction of a trivial
solution.

Note: The constant determining the percentage of non-zero
ground truth values to be included in a batch was empirically
determined to perform best as 15% non-zero values, when
tested using our sample data set. This value struck a balance
between predicting the trivial solution and accurately follow-
ing the trends in the real data, and was the value used to train
the models in all subsequent experimentation.

While the model is training, the optimal heater behavior is
to remain in an “always heating” stage to ensure safety and
comfort. Once the model is learned, we retain the most recent
flow values for at least the last week even if this is in excess
of the model’s desired input window. Doing so allows the
model to be resistant to possible data unavailability, allowing
the retained values to help back-fill values in the event that
data is missing. While this is all that is required for m ≤ 7,
we will need to store up to (m− 7) · n− 1 further values as
history to utilize the models complete lookback capabilities.
Therefore, we will have to maintain a buffer of size b such
that b takes on values as denoted by Equation 1.

b =

{
7 · n m ≤ 7

m · n− 1 m > 7
(1)



Fig. 8: Left: Application of the masked convolution on the
input m× n matrix. Right: The mask used to segment valid
values of the input patch or convolution kernels.

3) Predictive Operation: A convolutional operation was
selected as the basis of the predictive function, because con-
volution is well-suited to data where all points are likely to
be a linear combination of the points that precede it, either
immediately before or at similar times on previous days. Using
convolutional filters allow us to track small windows of time
relative to the entire time history, thereby making it easier
to capture the correlation between semi-local datapoints and
future values. To ensure that the convolution operation does
not look at the “future” values, the convolution operation
performed was masked (Figure 8) to avoid contamination of
the training process with future data.

When obtaining predictions for the desired time, we take an
input time series and convert it into the m×n matrix format.
This matrix is then passed through the network to predict the
next value. We obtain this predicted value by reading the value
returned in the timestamp of interest in the final 1 × N × 1
tensor (as noted in Figure 6). We then iterate through the data,
using this predicted value in conjunction with the initial input
time series (minus the single oldest data point, to maintain the
m × n of the input data) to make the next prediction in the
sequence. This process is continued until we have predicted
to the desired temporal distance into the future.

The performance of the model depends strongly on the
dimensions of the m×n matrix and relatedly, the dimensions
of the convolutional kernel. The height of the kernel is always
equal to m so that we can look at datapoints from all the
preceding days. However, the kernel width can vary for the
same value of m. The kernel generally acts as a receptive
field and the width influences how many samples before and
after the timestamp of interest are we looking at (e.g. a kernel
width of 61 will look at 30 timestamps before and after the
timestamp of interest). This dependence is explored in depth
when considering the predictive model’s results in Section VII

B. Cognitive Supervisor

In conjunction with the predictive model, a Cognitive Su-
pervisor considers the context of the water heater with regards
to Legionella formation, human safety, and energy demands.

The Cognitive Supervisor is a model-based simulator antic-
ipating demand for hot water over the next 24 hours at every
time step and computing the risk of cultivating Legionella.

The Supervisor, described in [24], [25], [26], uses context
information (in this case, rules about acceptable levels of
Legionella formation and a priori knowledge of growth con-
ditions) to identify and mitigate the risk of bacterial growth.
The Supervisor does this by commanding the water tank to
heat standing water, even if there is no anticipated demand
in excess of the sterilization temperature within the next day.
It further integrates with the predictive model’s anticipated
future demand and coupled energy input to identify the period
in the coming day during which the smallest delta in input
energy would cause the water to exceed the critical bactericidal
temperature for the duration necessary to assure safety.

The proposed anti-bacterial Supervisor uses a “watchdog”
timer with a sliding 24-hour window, setting a safety flag
to “true” if the temperature exceeds a predefined bactericidal
limit for a known duration, and resetting that flag to “false”
after water sits for 24 hours with temperatures below the target.
If heat in excess of the Legionella-lethal limit is not expected
in the coming day, the watchdog selects an optimal point
to increase the temperature exceeding the sterilization limit
based upon predicted demand and the heater’s energy model
(e.g. choosing the tank temperature minimizing the delta in
energy between the anticipated demand and the lowest-energy
“safe” state). The model may improve as new information
is learned about Legionella growth, for example to incorpo-
rate ambient temperature, water supply quality and chemical
treatments, pipe materials, or system flow rates known local
to the system or captured from remote network resources.
Eventually, variational techniques may be used to permute the
expected heating schedule in search of the minimum energy
difference between that required to meet household needs and
that meeting Legionella safety requirements, rather than timing
sterilization in advance of the largest outflow event as in[21].
This approach is ideally suited to use cases including typical
home or industrial use, or more complex cases such as those
with intermittent demand (e.g. vacation homes or offices that
close on the weekend).

VII. RESULTS

In this section, we test the envisioned model for various
hyperparameters and for the best model, visualize the pre-
dicted results and provide quantitative analysis of the model’s
performance in predicting hot water outflows.

Subsection VII-A considers the input region’s hyperparame-
ters (width and height), with Subsections VII-A1-VII-C using
the identified optimal hyperparameters for patch dimensions
to compute their results. SubsectionsVII-A-VII-C compute
anticipated water flow for a period of 24 hours in advance
of the present, which is the length of the window required
for the Cognitive Supervisor to identify the need for and op-
timal location of sterilization heating, while Subsection VII-C
considers the model’s ability to predict farther into the future,
which could be more useful for long-term demand projections,
e.g. those used for utilities to schedule power generation or
fuel ordering.



A. Ablation Study on Input Region Dimension
The developed predictive model takes as input the dimen-

sions of a local region patch to be examined. The size of this
patch determines model performance and is a hyperparameter
that must be tuned based on each home’s sample data and the
desired applications’ characteristics.

In this subsection, we therefore present multiple design
options for the local region patch. Specifically, we consider
the the width of input region, which defines the range of
correlated time steps across different days, and the height of
input region. The input region height determines the length of
previous days our model takes into consideration when making
future predictions.

We consider different values for both width and height,
and then visually compare the results before continuing on
to quantitative evaluation.

1) Study on the range of time steps:
To identify the optimal kernel width, the sample data were

considered and future flow was predicted forward in time
using the training data as input and the results were compared
against testing data as ground truth. Figure 9 shows results
comparing the ground truth (blue) and predicted (orange)
flow rate for various receptive fields, where the kernel width
(number of days, m) is permuted. Examining Figure 9, we see
that as the kernel width increases, the predicted data appears
to better capture the correlation between the datapoints and
makes predictions more in-line with the ground truth values.
Intuitively, it makes sense that additional time history would
improve the model’s predictive performance.

The models with smaller receptive fields generally output a
running mean but fail to capture the extent of the variability
of the data whereas those models with larger receptive fields
output results better tracking daily, hourly, and minute-by-
minute variability.

This is likely a result of the nature of the data. As water
demand need not occur at the same time everyday, having a
larger kernel width allows the model to see more of the data
from the past, and make better predictions of the future. The
models with smaller kernel widths are more likely to miss the
water demand if there is large variability in the timing of the
demand whereas those with larger kernel widths will still be
able to see and use the past demand.

However, the downside to constantly increasing the kernel
width is the large subsequent increase in the number of
trainable parameters (model with the kernel width of 15 had
≈ 28, 000 parameters compared to ≈ 136, 500 of the model
with the width of 121) which causes the model to become
slower to train, more complex to run on the constrained
computing environment of the Raspberry Pi 3, and increases
the risk of overfitting.

Before examining the performance results quantitatively,
note that due to the high heat capacity of water, it is more
critical to track water demand on a longer (hourly) time-scale
rather than minute-by-minute. This is because water in a tank
takes a very long time to heat and cool off. In essence, the
water tank stores heat energy sufficiently long that we do not

Receptive Test #1 Test #2 Test #3 Test #4 Avg.Field Width
15 0.000848 0.000721 0.000771 0.004479 0.001705
31 0.000274 0.000975 0.000623 0.005376 0.001812
61 0.002013 0.001832 0.000987 0.004808 0.002409
91 0.000703 0.002951 0.000902 0.004688 0.002311
121 0.000409 0.001010 0.000955 0.004397 0.001692

TABLE I: This table shows the numerical scores obtained by
the models with varying kernel width on each of the tests. The
widest field (most days of prior history) performs the best on
average, but the smallest receptive field does perform well.

need to consider events consuming hot water for a period
on the order of minutes. Instead, we must consider longer-
duration events and the related volume (a Riemann sum or
integral of flow over time). The length of time considered is a
function of tank size, since a bigger tank takes longer to heat
up but also longer to draw down. As a result, even though we
minimized MSE in training, we will use a different metric to
evaluate model performance at runtime.

This metric is computed by looking at the points within a
window and computing the MSE inside that window after best
aligning the predictions to the ground truth values. This acts as
a form of similarity score between the shapes and magnitudes
of the two sets of values under the window.

The reported score is the value that results from summing
over all the similarity scores between the predictions and
the ground truth at each possible window position as the
window slides across the data. We consider each datapoint
within a window only once (i.e. the sliding window strides
at intervals equal to its length), and divide this sum by the
number of days in the future being predicting. This acts as a
better measure of performance for our purposes than simply
using the MSE across the entire length of the predictions
and the ground truth. Similar to MSE, smaller values indicate
improved performance.

Using this metric as shown in Table I, we see that the
model with kernel width of 121 had the best performance
overall. Notably, the model attained good results with much
smaller smaller receptive fields (15) and comparatively poor
performance with kernel width of 91, despite results that
qualitatively appear reasonable.

The model performs well using the similarity metric with
a smaller receptive field due to the contents of the training
home’s input data. As mentioned in Section VI-A2, most of the
flow data are 0, and from Figure 9, we see that the outputs from
most learned models tends to be conservative. These models
report small values resulting in small MSE for most future
prediction regions. This behavior illustrates precisely why an
improved similarity metric was necessary.

However, the model with the kernel width of 91 likely
underperformed quantitatively due in part to some outputs
being large. In Figure 9, the y-limits were kept constant
to maintain uniformity and aid easier comparative analysis.
Points that went beyond the limits were truncated visually,
but these points were still used in calculation of the error



Fig. 9: Test results on varying kernel width. The maximum number of days (m) and therefore, the height of the convolutional
kernel was kept constant but the width of the kernel was varied to change the time window under consideration. Each row
corresponds to a different model configuration and each column is the performance of the corresponding model on a particular
test. We see that as we increase the kernel width, the model better learns to capture the trends in the data and begins to make
predictions that more accurately match the ground truth values.

metric which resulted in the inconsistencies (Test #2) in the
quantitative results.

2) Sensitivity to inclusion of previous days: The results in
this subsection consider the optimal input patch dimensions
identified in Subsection VII-A1. We identified the optimal
kernel width as being 121, and will keep the width constant
as we study the effect of varying the number of days included
in the reference time history.

Observing Figure 10, we see that for smaller kernel heights
(one and two), the graphical results poorly capture the data
trend as the model lacks significant contextual information.

However, once we start considering reference data ≥ one week
prior, the model begins to successfully learn the trends in the
data and make predictions that better-mirror the ground truth
values.

While looking at data more than one week back does
improve predictor performance, it doesn’t improve results sig-
nificantly compared to the increasing the number of learnable
parameters (Models with kernel height of 1, 2, 8, 22 and
29 have ≈ 28, 000, 43, 500, 136, 500, 353, 345 and 461, 700
parameters respectively). Increasing the learnable parameter



Fig. 10: Test results on varying kernel height. The maximum number of days (m) and therefore, the height of the convolutional
kernel was varied while the width of the kernel was kept constant and equal to the best value from Section VII-A1 (kernel
width of 121) to better study the effect of changing the number of previous days that are taken under consideration. Similar to
Figure 9, each row corresponds to a different model configuration and each column is the performance of the corresponding
model on a particular test. We see that as we look beyond a week, the models begin to generate more accurate predictions
which is likely a result of them having access to the target days demand in earlier weeks.

count results in an increased tendency to overfit to the data
and a related increase in time to train the model (the model
with the kernel height of 29 took ≈ 2.5× the amount of time
to train compared with the model having a height of 8).

Looking at the results in Table II, we notice that as the
kernel heights increased beyond one week, the models begin to
outperform those models with the smaller receptive fields both
qualitatively and quantitatively. The best results come from



Fig. 11: This figure shows heatmap vectors representing the mean and standard deviation of unnormalized flow rates for every
given day and minute. The color bars to the right of the images indicate the differing scales used in the each image. The values
shown correspond with those indicated in Figure 5 and Figure 4. The algorithm predicts the next row of the constructed m×n
matrix, and this representation provides a reasonable graphical understanding of what the next predicted row may resemble.
These vectors may be used to construct another performance metric for the model by comparing the model’s predictions with
the mean water demands for the corresponding days and minutes. Examining the similarity between the mean vector of the
data and that of the model predictions’ mean vectors and reporting the percentage of model predictions that lie within a certain
number of standard deviations gives us another qualitative and quantitative way of measuring the models performance.

Receptive Test #1 Test #2 Test #3 Test #4 Avg.Field Height
1 0.000415 0.000687 0.000634 0.004721 0.001614
2 0.000278 0.000677 0.000612 0.004789 0.001589
8 0.000408 0.001009 0.000955 0.0043965 0.001692
15 0.000524 0.000782 0.000777 0.004571 0.001663
22 0.000317 0.000736 0.000597 0.004686 0.001584
29 0.000321 0.000740 0.000627 0.004606 0.001573

TABLE II: Table showing the numerical scores obtained by
the models with varying kernel width on each of the tests.
The tallest receptive field performs the best, but is the most
computationally-intensive, which could be a challenge when
training or running within a constrained computing environ-
ment.

the model that looked back the furthest (the model with the
kernel height of 29, considering just over four weeks of prior
data, which balances data volume, predictive performance, and
computational complexity). Here again, the the smallest kernel
heights (one and two) again perform impressively. This behav-
ior occurs for the same reasons identified in Section VII-A1.

B. Evaluation on the Whole Day Prediction

In this subsection, we evaluate the quality of the data
projected one day into the future, the length of prediction
necessary to support the Cognitive Supervisor’s Legionella
watchdog.

We begin by taking the water demand data we have and
finding the mean water demand for each day and minute
of the week. We then use these computed means to find
the corresponding standard deviations of the water demand
on each of the days and minutes. The resultant values are
expressed as vectors in Figure 11

The resulting vectors help determine whether the model
is performing well by considering how closely the model’s
predictions match the output mean vectors (Figure 11). Ad-
ditionally, it will also give us a sense of what the models
predictions will look like for unseen data.

Fig. 12: Output mean vectors for model predictions. Top-left:
Mean vectors for model with kernel dimensions of 1 × 121.
Top-right: Mean vectors for model with kernel dimensions of
8 × 15. Bottom-left: Mean vectors for the data. Same as the
one shown in Figure 11. Shown here for ease of comparison.
Bottom-right: Mean vectors for model with kernel dimensions
of 29× 121.

For each set of predicted outputs, we generate a corre-
sponding set of mean vectors to help visualize how the model
makes its predictions. Additionally, we compute whether each
prediction that the model made was within two standard
deviations of the mean demand on that day and time, and
return the percentage of such inliers.

The model with the kernel height, width of 29 and 121
respectively had the highest percentage of inliers at 93.32%.
In addition to its generated mean vectors we also show the
generated mean vectors for models with kernel dimensions
of 1 × 121 and 8 × 15 as examples of poorer predictions



(Figure 12).
Examining Figure 12, we see that the predictions generated

by the model with an input kernel of dimension 29×121 most
closely resemble the ground truth mean vectors both in range
and configuration. We note that the predictions generated by
the model with kernel dimensions of 1× 121 poorly track the
ground truth vectors’ behavior, often maintaining the same
conservatively small value throughout.

For the model with kernel dimensions of 8 × 15, the
generated mean prediction vectors appear more reasonable,
however, its percentage of inliers is a low 74.62%. Under-
standing why requires further inspection of the image. Note
that the predictions are consistently higher than those expected
in the mean vectors, with the color bar indicating a non-zero
minimum value and a maximum value nearly twice the mean
vector. These results also align with the models corresponding
results shown in Figure 9.

C. Capability for Long-Term Future Data Prediction

To enable long-term scheduling and demand prediction
useful for utility-scale optimization, we are interested in deter-
mining how far ahead in time the proposed model can predict
while remaining useful. In this subsection, we predict data for
multiple days into the future and evaluate their performance.

To obtain these long-term predictions, we use the best model
discovered in Section VII-A, i.e. the model with the receptive
field height and width of 29 and 121, respectively. The data
that we will be conditioning on to make predictions is the
same as the data that was used for Test #3 in Figure 9 and
Figure 10, but the prediction length now extends up to two
weeks forward from the simulated “present” date. The results
of this experimentation are shown in Figure 13

In Figure 13, we see that the model behaves as expected
and diverges over time. The graph showing the progression of
the error metric mentioned in Section VII-A1 over time. We
note an upward trend, indicating that the model’s predictions
become progressively less accurate as we predict further into
the future.

This behavior is expected, and is common to many autore-
gressive models. Since we are making predictions for future
values based on all the past data (in this case, up to 29 · 1440
datapoints), as we predict further into the future, we are
increasingly basing our predicted values off of other predicted
datapoints. As the quality of predicted data is inherently going
to be less than that of the observed data, the slight differences
tend to add up and the error accumulates over time.

We can see this reflected qualitatively in Figure 13, where
the error metric is small for several days with a small, pseudo-
linear increase at the outset. The sudden increase in the error
metric on the 8th day is a result of multiple spikes in water
demand that the model was unable to predict, likely as a result
of the size of the input kernel which must make decisions
based on ≥ 7 days of predicted data concatenated with the
original data. As the time projected forward increases, the
relative ratio of known-good data to predicted and uncertain
data decreases, leading to poorer performance. By the 14th

Fig. 13: Obtained results when the model is used to predict fur-
ther than a single day. Top-left: 2 days prediction, Top-right: 3
days prediction. Center-left: 5 days prediction. Center-right:
8 days prediction. Bottom-left: 14 days prediction. Bottom-
right: Graph showing the progression of the error metric as
we predict further into the future.

day, the model misses significant periods of demand and/or
underestimates the degree of demand at that time.

From this result, we find strong initial performance and a
plateau allowing for reasonable flow (and by association heat
energy) prediction for the first projected week after the current
time. This significant duration suggests that it is feasible for a
heater to proactively vary the upcoming temperature profile to
stave off Legionella formation with a minimal change in input
energy, thereby saving natural resources and money without
exposing humans to risk unnecessarily. The performance up
to one week in advance without significant divergence also
indicates that it may be possible for utilities to predict future
demand in order to better match supply with demand.

VIII. CONCLUSION AND FUTURE WORK

We successfully demonstrated a predictive model for an-
ticipating water outflow events based on historic data within
a single home and proposed a Cognitive Supervisor capable
of using these predicted values to stave off or reverse the
formation of malignant Legionella bacteria with a minimal
increase in tank heating energy. We also recommended the
use of a low-cost connected hot water tank heater controller
based on a Raspberry Pi microcomputer to instrument and



modulate the power to incumbent water heating systems,
thereby providing a cost-effective solution for increasing the
energy efficiency of hot water delivery without compromising
comfort or safety.

This work demonstrates the potential for predictive models
to anticipate water heating demand in order to comfortably
and safely reduce energy expenditure. The described control
algorithm may be used to optimize energy consumption for
low-cost systems without mixing valves, subject to health
constraints imposed by Legionella bacteria. Extension from
flow-based models to energy-driven models (considering tank
heating dynamics and temperature/flow relationships) will lend
this predictive model further utility in emerging and developed
markets.

The impact of safety-conscious energy demand modeling is
significant. While savings will vary based on the individual
heater, the learned model, and use case, our solution’s savings
should fall between the savings for the best-available tech-
nologies today, Booysen’s EM and EML schemes (17.8% and
13.1%, respectively)[21].

In cases where water use is predictable and there are few
idle periods, Booysen’s EM scheme’s 17.8% median energy
savings should be attainable. In cases where water utilization is
repeatable and where the highest outflow volume corresponds
to the highest energy event, but where stored water may
stagnate for periods, our proposed model and Booysen’s EML
should perform similarly (13.1%).

For use cases where demand is intermittent, conventional
predictive modeling tends to be less effective and long idle
periods require additional tank sterilization energy. This is
true, for example, in vacation homes or offices that shut down
for > 24 hours on the weekend. It is in these scenarios,
or situations in which the largest outflow event of the day
is not necessary the most energetic event, that our proposed
Cognitive approach will yield savings falling between the EM
and EML models. This scenario may occur where there exist
high-energy, limited-outflow events, e.g. due to hot and cold
water mixing for bathing. Our ability to project demand well
into the future and to monitor the expected energetics of the
tank output will help us minimize the delta in energy required
to exceed the Legionella sterilization temperature, balancing
input energy and water safety.

We can compute rough, first-order economic, energetic, and
environmental savings enabled by a proactive water heating
model responsive to bacterial growth. To compute poten-
tial savings within the United States, we first estimate the
number of buildings by type, including 5.8M commercial
buildings[31], of which ≈4.6M [32] have one or more days
where there is low- to no- water demand. We further estimate
there to be 128M households [33] and 9M vacation homes
[34]. Lastly, we approximate 8.143M households in poverty
[35] that cannot use hot water or maintain low temperatures.
From these data, we estimate the percentage of regularly-
occupied homes and offices and conclude that ≈85% of the
buildings are regularly occupied. If the regularly-occupied
buildings save 17.8% using our model (assuming similar per-

formance to the EM model), and the under-utilized buildings
save 14.4% (assuming our Cognitive Supervisor approach can
gain 10% efficiency over the EML model by more-optimally
timing the sterilization event), we find a 17.3% potential
savings relative to business as usual.

The average occupied household uses 64 gallons of hot
water per day [36] and the average office utilizes 112 gallons
of hot water per day (calculated using the average daily hot
water consumption of a person in an office and the average
number of people per office from[37], [31], [38]).

Using Energy.gov’s “Energy Cost Calculator for Electric
and Gas Water Heaters” [39], we see that a representative
home and office using heaters with Federal Energy Manage-
ment Program (FEMP) recommended performance levels have
annual hot water energy costs of 4, 750kWh (428$ at 0.09$
per kWh) and 8, 313kWh (748$ at 0.09$ per kWh) respec-
tively. With energy savings of 17.3% we save 821.8kWh or
73.96$ per representative house and 1438.15kWh or 129.43$
per representative office annually. In addition to the energy
expenditures, our carbon footprint also decreases by 1.56lb
per kilowatt-hour saved[40].

In the U.S. alone, homeowners would save over $10B
annually in water heating costs, and save almost 80MMT of
CO2 from being released into the atmosphere. For commercial
buildings, the savings are over $750M.

At a global scale, the savings and impact of proactive water
heating adds up. The use of predictive models will have the
most impact at scale, where Cloud-aggregated data may be
used to control aspects of energy management systems[41].
Connectivity amplifies these potential savings. For example,
when water must be heated in excess of user tap demand
to prevent bacterial growth, other connected devices (dish
washers or washing machines) may be scheduled to run, taking
advantage of energy that would otherwise be lost to cooling.

We know that mean performance is more critical to predict
than high-frequency demand spikes and troughs, so future
work will consider the optimal balance of tracking highly-
variable data at different timescales (minute-by-minute or
hour-by-hour) with computational complexity, as the high
latent heat of water means that water takes a long time to
heat and cool. Capturing data from multiple homes and over a
longer period will allow us to explore repeatability of model
performance across homes, and the impact of seasonal effects
on model performance. With these data borne out, we may
continue to consider the implications of utility-scale demand
prediction and Internet-enabled water heater control using
Cognitive Supervisor enabled safety models.

Additional work will also consider controller generalizabil-
ity and model transferability (using a common pre-trained
model and adapting the model’s output layers for specific
homes) as well as architectures for connectivity allowing
models to be trained and shared remotely but used locally.
Federated learning may be a reasonable technique to train net-
works using distributed compute hardware and sensor samples.

The techniques described in this manuscript have the po-
tential to save energy not only in hot water heating, but for



other utilities and appliances. The combination of accurate
predictive demand modeling and context-aware systems is a
unique enabler of safe and efficient infrastructure with the
potential to save energy and reduce disease globally.
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