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Abstract—Smartphones are equipped with many low-cost sen-
sors. As a result, opportunities open for smartphones to serve
as a platform for many challenging ubiquitous applications,
including indoor localization. By employing accelerometers on
smartphones, dead reckoning is an intuitive and common ap-
proach to generate a user’s indoor motion trace. Nevertheless,
dead reckoning often deviates from the ground truth due to noise
in the sensing data. We propose iLoom, an indoor localization
approach that benefits by transferring learning from tracking
outdoor motions to the indoor environment. Via sensing data on
a smartphone, iLoom constructs two datasets: relatively accurate
outdoor motions from GPS and less accurate indoor motions from
accelerometers. Then, iLoom leverages an Acceleration Range
Box to improve a user’s acceleration value used for computing
dead reckoning. After using a transfer learning algorithm to
the two datasets, iLoom boosts the Acceleration Range Box to
achieve better indoor localization results. In addition, iLoom

exploits indoor GPS exception cases and pedometer to further
improve dead reckoning. Through case studies on 15 volunteers
for the indoor and outdoor scenarios, we show iLoom is a non-
infrastructure and low-training complexity indoor positioning
approach that achieved a localization accuracy of 0.28∼0.51m
in multiple scenarios.

I. INTRODUCTION

Indoor localization is a fundamental service for various

location based applications. Despite the extensive research and

development of indoor positioning systems [1]–[4], location-

based services are not yet ubiquitous indoors. Apart from the

traditional device-based and device-free indoor localization

approaches, smartphone-based approaches capture people’s

motions and traces by analyzing the acceleration, light, sound

and other signals [5]–[8].
Although inertial sensing on smartphones can capture

people’s movement via the sensing data, there are some short-

comings: the sensing information, such as the 3-D acceleration

from a smartphone does not always reflect features of a person’s

movements; the data training task is difficult: the size of

data is small for statistical location accuracy and the learning

algorithm is significantly complex for a smartphone. Based

on this point of view, we ask the question: Can we enhance

smartphone users’ capabilities to locate themselves accurately

without complex indoor training and without an extra, perhaps

expensive infrastructure?
In this paper, we propose iLoom (indoor Localization through

transferring learning of outdoor motion), an accurate and low-
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Fig. 1 iLoom in Action: employ outdoor data to improve indoor

positioning

cost indoor localization system that integrates an off-the-shelf

dead reckoning approach, GPS information, and a transfer

learning mechanism. Our idea is inspired by the observation

that, when a certain user walks indoors or outdoors, some

features of his/her walking patterns, such as the average speed

and acceleration are not greatly affected by the different

environments. Recognizing this opportunity, we use outdoor

walking behaviors to assist users’ indoor localization. Initially,

iLoom provides a sensing service on a smartphone that detects

whether the smartphone is indoors or outdoors. Then, iLoom

uses dead reckoning [5]. An Acceleration Range Box is

introduced to filter the accelerations that do not represent the

user’s movement. To determine the range of the Acceleration

Range Box, iLoom collects the average speed and acceleration

from the indoor and outdoor environments. Since the outdoor

motion data using GPS is more accurate than movement

determined by accelerometer data, iLoom not only uses indoor

datasets but also uses the outdoor GPS datasets. In the outdoor

dataset, we employ Transfer Learning [9] to select the parts of

accelerations for which people’s outdoor movement behaviors

are similar to indoor motions and add the chosen outdoor data

to the indoor datasets for boosting the effectiveness of the

Acceleration Range Box.
Two additional techniques for using outdoor/indoor infor-

mation are proposed to enhance the original dead reckoning

method: iLoom adopts a pedometer to construct other types

of Acceleration Range Boxes that reduce the errors of indoor

localization; indoor GPS exception cases are used to decrease

deviations. We prototype iLoom and conduct a set of experi-

ments in indoor and outdoor scenarios. Fifteen volunteers’ cases

978-1-5386-2723-5/17/$31.00 ©2017 IEEE 



(a) Sensing Data Collection 

Z!

Y!

X!

GPS info 

Air Pressure Magnetic 

Light Acceleration 

Cell Signal 

Transfer Boosting 

AVG. Acceleration  

and Speed Relation 

(c) Transfer Learning Procedure 

S
1

S
2

S
n

a
x X

Y

Z

a
y

a
z

Pedometer 

Computation  

Indoor GPS  

Exception 

Air Pressure

Acceleration 

Range Box 

Indoor 

Position 

Dead  

Reckoning 

Outdoor Motion 

Data from GPS 
Indoor Motion 

Data from Accel 

Indoor/Outdoor  

Detection via GAPO 

(b) Environment Detection (d) Enhance Dead Reckoning Optimization Methods 

Sampling Clustering 

Fig. 2 System architecture of iLoom.

have been studied. The evaluation results demonstrate iLoom is

able to profile data and locate users seamlessly and effectively

by enhancing the original dead reckoning approach. The errors

of indoor localization are between 0.28m and 0.51m. Also,

iLoom does not request users to do special off-line training. By

opening iLoom and the GPS option for daily walking, iLoom

can estimate indoor position more accurately.
In summary, we make the following contributions:

• We employ outdoor GPS information and other sensing

data obtained from smartphones to detect whether the

smartphone is indoors or outdoors.

• While many researchers have used dead reckoning as a

means to specify a user’s position, to the best of our

knowledge, iLoom is the first of its kind to transfer the

outdoor motion information to the indoor dataset for

boosting indoor localization automatically.

• Indoor GPS Exception and Pedometer Measurements are

implemented to assist the dead reckoning method.

In the rest of the paper, we first detail the system design in

section II. The implementation and evaluation of iLoom are

shown in section III. We review related work in section IV.

Section V provides the conclusions and future work.

II. SYSTEM DESIGN

A. System Overview

Fig. 2 presents the system architecture of iLoom. iLoom has

four steps: 1) leverage the inertial sensors on a smartphone

to obtain the acceleration, GPS, air pressure, cell signal, light

and magnetic information; 2) use the acquired sensing data

from iLoom to distinguish between the indoor and outdoor

environments with high accuracy by applying a k-means

clustering algorithm; 3) create an Acceleration Range Box,

which is a range of accelerations in different directions to

filter the incorrect accelerations that lead to dead reckoning

errors. In order to characterize the Acceleration Range Box, we

construct a relation from the user’s average speed to the average

acceleration in each time period. Taking the average speed as

the bridge, iLoom chooses the transfer learning approach to

transfer the worthwhile outdoor GPS information to the dataset

that stores acceleration samples that were received indoors.

4) via the Average Acceleration Range Box constructed by

transfer learning and other optimization technologies, iLoom

calibrates the errors of dead reckoning to achieve accurate

indoor localization results.
We propose two other approaches to assist the indoor

localization: 1) iLoom adopts a third-party pedometer to modify

and boost the Acceleration Range Box; 2) although a user walks

indoors, he/she may receive a GPS signal occasionally. Such

GPS samples cannot be used for indoor positioning and may

cause a false positive when a localization system detects the

user is indoors or outdoors. We design an approach that not

only avoids such mistakes but also improves indoor localization

accuracy.

B. Indoor and Outdoor Detection

Before transferring the useful motion data from outdoors

to indoors, we need to identify the samples obtained from

the smartphones that belong to either the indoor or outdoor

environments. An intuitive detection scheme estimates the po-

sitions via GPS. When the smartphone receives a GPS sample,

the user can assume he/she is in an outdoor environment. In

reality, while a user is walking in a building, e.g., when he/she

is close to a window, he/she might receive GPS samples on

his/her smartphone occasionally. However, these samples do

not represent the user when outdoors.
To tackle this problem, researchers at Nanyang Technological

University developed IODetector [10], which uses three types of

information on smartphones: light intensity, cell signal strength,

and magnetic sensor values. Even if each of them cannot

determine the environment, IODetector aggregates them and

provides the solution. Based upon IODetector, researchers

at the University of Edinburgh developed a semi-supervised

learning model to analyze the indoor/outdoor location of

smartphones [11]. They used more than three types of sensors

on smartphones to collect physical signals. By applying the

semi-supervised learning model, the accuracy of IODetector

increases to 92.5%.
In this section, we introduce a novel approach, GAPO. By

leveraging the GPS, Air Pressure, and Other cyber-physical

information on the smartphones (light intensity, cell signal

strength, magnetic sensing values), we distinguish the in-

door/outdoor context for the smartphones.
Apart from the two above approaches, the proposed purpose

of iLoom is to transfer outdoor GPS information to improve

indoor positioning. Hence, GPS samples can be borrowed to

detect environments. Considering both the current and historical

information, a parameter tsi (time sequence index of GPS) is

defined as formula (1):

tsi = (
t∑

i=1

λ× 2i)/(
t∑

i=1

2i) (1)

where t is the number of time periods, i refers to the time

period. λ can be set as 0 or 1 (if the smartphone gets the

sample in time period i, λ equals to 1, otherwise, it is set as



Indoor (ground truth) Outdoor (ground truth)

Indoor (estimate) Nii Nio

Outdoor (estimate) Noi Noo

GPS Only IODetector GAPO

Sports Center 83.50% 80.50% 94.50%

Laboratory Building 79.50% 77.50% 90.00%

0). For tsi, the obtained GPS samples that are closer to the

current time period will be assigned more weight.
Additionally, modern smartphones include barometers.

Highly accurate air pressure can be easily accessed. The

accuracy of the barometer, such as the barometers on the

Samsung Galaxy smartphones, can achieve within 0.1hPa.

Although air pressure is determined by many factors, the

differences of temperatures in indoor and outdoor scenarios

often cause the variations of air pressure. Therefore, we add

air pressure as a feature for distinguishing indoor and outdoor

environments. After leveraging k-means algorithms, GAPO

categorizes these samples into indoor and outdoor datasets.
We conducted a preliminary observation to explore GAPO:

one user of a smartphone walks freely, receives 1000 sam-

ples from outdoor/indoor environments, and conducts GAPO

to detect the environments. We compare the estimated in-

door/outdoor results with the ground truth. Table I is a

confusion matrix for representing the detection results. N
in Table I denotes the number of samples. The metric Pe

in formula (2) refers to the successful rate of estimating the

indoor/outdoor environment.

Pe = (Nii +Noo)/(Nii +Nio +Noi +Noo) (2)

As shown in Table II, by running the GPS and IODetector

APP from Google Play, we compare the Pe values with other

approaches in two different buildings. GAPO archives better

performance.

C. Dead Reckoning is Not Enough

Pedestrian dead reckoning methods have been widely used

in indoor localization, especially for the smartphone based

approaches [5]. Based on the accurate initial position, the

application executing on the mobile device computes movement

distance in each segment continuously. Then, it will form the

whole trace of the user’s motion. For dead reckoning, we use

sensors on the smartphone (accelerometer, magnetometer, and

gyroscope) to estimate the user’s step length and obtain heading

direction [12].
Although dead reckoning is easy to implement, a major

difficulty in dead reckoning is that a smartphone only records

its own accelerations rather than the accelerations of the human

body’s motion. In practice, when users of smartphones collect

their motion data via smartphones, some cases often occur,

such as giving a phone call to a friend, sending messages

via typing on the screen, and swinging the hands holding the

smartphones. These behaviors incur serious deviations from
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Fig. 3 Acceleration Range Box. The value on each axis represents the

average maximal acceleration in each direction.

a person’s walking pattern. Moreover, such errors grow with

time because the next motion segment is calculated from the

current one with inaccuracy. Due to these reasons, the dead

reckoning trajectories are accurate in the beginning, but diverge

from the ground truth over time.

D. Initial Noise Filtering

When we employ dead reckoning as a means to locate people,

it is necessary to filter obtained accelerations that cause serious

errors. In iLoom, even though we do not detect the place of a

smartphone (e.g., in a pocket, on a user’s hand, near an ear of

user) and recognize human’s activities in detail, we set basic

constraints for collected accelerations. Because the reasonable

range of human bodies’ motions is within 0-5m/s2 on x, y and

z axes [13], we preliminarily eliminate the acceleration beyond

the range while collecting the data from accelerometers.

E. Acceleration Range Box

Every user has his/her own motion features. For example,

when people walk regularly (not considering jumping, running,

and other special movements), the values of acceleration and

average speed on the x, y, and z directions should be within

certain ranges. Inspired by this point, we propose a technique

to enhance dead reckoning: if we can estimate the maximum

accelerations on x, y, and z directions, they can be abstracted

as the three sides of a cuboid. The cuboid is called Acceleration

Range Box (arb). As Fig. 3 shows, when we adopt dead

reckoning to generate a user’s motion trace, if the acceleration

value is out of arb, we assume the value is invalid. We use

the acceleration in the previous period to replace the invalid

acceleration.
Since we introduced the Acceleration Range Box (arb), an

important challenge is how to build an efficient arb for each

user. A brute-force approach is 1) recording all the accelerations

on x, y, and z axes of a smartphone; 2) finding the maximum

value in each direction as the side of a box. However, such

arb cannot reflect people’s motion feature and some invalid

acceleration values will be accepted.
In iLoom, although we do not categorize people’s movements

in detail, a practical metric to classify people’s motions is

introduced. The metric is Average Speed (v) of people’s

movement in a certain time period. For a certain Range of

Speed, we assume there is a specific arb for a user. For example,

a user’s Average Speed in 1 minute is 1.4m/s, the related arb



is 2.4m/s2 on x axis, 1.4m/s2 on y axis, and 1.4m/s2 on z
axis.

We then construct an arb for each certain v. In an indoor

environment, as in formulas (3) and (4), we can capture the v
in each segment through dividing the moving distance by time

t. For the outdoor localization, the v in each time period can

be obtained via GPS. For each time length of t, we record the

maximum values of the acceleration on the three directions and

form the arb. If there are more than one arb in a speed range,

we will compute the average value of maximal acceleration on

each direction and make use of it as the side of a cuboid. The

newly generated box is named Average Acceleration Range

Box (arb).
For a certain Range of Speed (Rv), it also has its corre-

sponding arb. Therefore, we can create the relation between

Range of Speed and Average Acceleration Range Box. This

relation in outdoor environments is named Ro(Rv, arb) (Ro

for short), and it is named Ri(Rv, arb) in indoor environments

(Ri for short).

F. Can Outdoor Localization Help Indoor Localization?

For dead reckoning based indoor localization, because the

accelerations obtained from the accelerometer may not be

consistent with the human body’s motion, the indoor v might

be computed incorrectly. However, since GPS has a relatively

accurate performance in outdoor environments, the outdoor v
does not have such a problem. The corresponding Ro is often

more accurate than Ri.
Therefore, we propose an audacious conjecture: could we

transfer the useful data from Ro to Ri, and build a better

relation to improve the dead reckoning approach?
The intuition for iLoom is simple. For a certain person,

his/her walking style does not change greatly whenever he/she

is indoor or outdoor. For every speed range of each person,

there is a particular distribution, e.g, a male adult whose age

is 30, his speed range is mainly distributed from 1.2m/s to

1.7m/s [14].
To further verify this pre-condition, we did the preliminary

observation: we recorded two users’ walking data by leveraging

the smartphones that are in left jean pockets. Two users walked

regularly in three scenarios: outdoor playground (30 minutes),

indoor fitness center (30 minutes), indoor shopping center (30

minutes). We build the 6 corresponding datasets based upon two

types of features: Average Speed (v) and Average Acceleration

Range Box (arb). The sampling frequency is 5HZ. We focus

on the similarity of the six datasets. Two common metrics of

similarities are leveraged:
1) Dist(Ci, Cj) - The Euclidean distance between the centers

of datasets i and j;
2) Dist(si, sj) - The average Euclidean distance between

each sample in dataset i and dataset j.
By computing the similarities among different datasets,

our case study provides the following relation: even if in

different scenarios, for a certain user, walking datasets are

highly similar. However, for a certain scenario, different users’

walking datasets are different.

If we select the useful and highly accurate samples from

Ro and combine them to Ri, it is probable to build a larger

and more accurate relation. For each speed range, we will re-

compute the corresponding arb. If the new arb is more suitable

for dead reckoning, it can boost the localization results.

G. Transfer Learning from Outdoor to Indoor

In this subsection, we start to transfer the worthwhile

information from the outdoor motion dataset to the indoor

motion dataset. In this paper, we employ Transfer Learning

[9]. It stores knowledge obtained from solving one problem

and uses it for a similar problem.
In iLoom, we study the useful instances from Ro and apply

them on Ri, which are different but similar to Ro. In each

instance, it consists of two features: Average Speed (v) and

Average Acceleration Range Box (arb).
When we apply transfer learning, the main challenge of

transition is: for a certain user, even if his/her walking behavior

is similar whenever he/she is indoors or outdoors, there is a

small amount of differences in the speed distribution between

Ri and Ro. On the perspective of Ri, we need to 1) choose

the instances that keep the same-distributions as Ri from Ro,

and 2) transfer these instances to Ri.
First, we define S and T to represent the test dataset (indoor

information) and the training dataset (outdoor information).

SVM [15] is the default classifier. We select part of the labeled

training data having the similar distribution as the test data

(indoor information) to build a better classifier. These data are

named same-distribution training data (Ts), the size of Ts is m;

The training data, whose distribution is different from the test

data, are named diff-distribution training data (Td); the size of

Td is n.
X and Y are two instance spaces. Xs and Xd represent same-

distribution instance space and different-distribution instance

space. Y = {0, 1} is the set of category labels. Concept mf is a

boolean mapping function from X to Y , and let X = Xs∪Xd.

The return value of the label for the data instance/sample x is

mf(x).
From Ro, we can obtain 1) inadequate labeled same-

distribution training data Ts, 2) diff-distribution training data

Td, and 3) some unlabeled test data S.
Our task is to train a classifier mf ′ : X → Y that minimizes

the prediction error on the unlabeled dataset S. In the proposed

approach, the prediction operation is defined as: if we use the

arb and dead reckoning approach to localize people, and if the

deviation distance is within 1m, the prediction is successful;

otherwise, the prediction is a failure.
To achieve this goal, we adopt the TrAdaBoost approach

[16]: for diff-distribution training instances, when they are

wrongly predicted due to the distribution modified by the

learned model, these instances could be recognized as the

most dissimilar instances to the same-distribution instances.

TrAdaBoost provides a mechanism to decrease the weights of

these instances in order to weaken their impacts. Algorithm

1 illustrates the procedure of TrAdaBoost. In each iteration

round, once a diff-distribution training instance in Ro is not

predicted successfully, the instance may conflict with the same-



Symbols Definition

v, Rv Average Speed, Range of Average Speed

arb, arb Acceleration Range Box, Average Acceleration Range Box

Ri(Rv, arb) Relation between Rv and arb in indoor environment

Ro(Rv, arb) Relation between Rv and arb in outdoor environment

Rc(Rv, arb) Relation between Rv and arb in combined dataset

Xs,Xd same-distribution / different-distribution instance space

Sd,Ss diff-distribution / same-distribution as sample space

L set of category labels, L= (0, 1)

mf boolean mapping function from X to Y

S,T test dataset and training dataset

k size of the test set S that is unlabeled

Ts, Td same-distribution / diff-distribution training dataset

n,m size of Ts and Td

w weight vector for dataset

ht hypothesis from X → Y

ǫt error of ht on same-distribution training dataset

p probability of instances transferred from T to Ri(Rv, arb)

Algorithm 1 Algorithm of Transfer Boosting

Input:
T , S, Ri(Rv, arb), Ro(Rv, arb)

Output:
The updated Ri(Rv, arb) including the transferred instances

1: Set weight vector w1
← (w1

1, ..., w
1
n+m).

2: while N>0 do
3: N −−;
4: Let pt ← wt/(

∑n+m

i=1 wt
i).

5: Call SVM/SVMt;
6: (T with distribution pt over T ) ∪ S.
7: Get back to hypothesis: ht : X → Y .
8: Estimate the error of ht on Ts:

ǫt ←
∑n+m

i=n+1

wt

i
×|ht(xi)−mf(xi)|

∑n+m

i=n+1
wt

i

9: Set βt ← ǫt/(1−ǫt), (ǫt < 0.5) and β = 1/(1+
√

2lnn/N).
10: Update the new weight vector:

wt+1
i ←

{

wt
iβ

|ht(xi)−mf(xi)|
t , 1 ≤ i ≤ n

wt
iβ

|−ht(xi)−mf(xi)|
t , n+ 1 ≤ i ≤ n+m

.

11: sort instances in Ro(Rv, arb) by the latest wt+1
i

12: end while
13: transfer p% instances with higher weights in T to Ri(Rv, arb)

distribution training data. Hence, it is necessary to reduce its

training weight w to decrease its effect. We multiply the weight

by the factor β|ht(xi)−mf(xi)|, which is in the range of (0,1].

In the next round, the misclassified diff-distribution training

instances will have less effect for the transfer learning procedure

than the current round. By iteration, the diff-distribution training

instances in Ro that are proximate to the same-distribution

instances will have higher training weights, whereas the diff-

distribution training instances that are dissimilar to the same-

distribution ones will have lower weights. Thus, the instances

having large training weights in Ro can help the learning

algorithm to train better classifiers. The noises of acceleration

values on the three orientations will be reduced effectively.
After executing the transfer boosting, we only transfer the

p% instances with higher weights to assist the classification

approach. The probability of transferred instances in Ro is

determined by the experience. The theoretical analysis and

proof of transfer boosting algorithm are in the literature [16].
Via transferring the same-distribution instances from Ro to

Ri, we obtain a new relation Rc(Rv, arb) (Rc for short) in
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Fig. 4 The procedure of transfer learning in iLoom.

the combined dataset. Thus, a user can employ the constraint

made by the newly generated arb to enhance dead reckoning

localization.

H. Pedometer Improves Dead Reckoning

Most common smartphones can support and run a pedometer

application. Samsung Galaxy Smartphones provide an off-the-

shelf application named S Health to count the number of a

person’s walking steps. Some brands of wearable devices, such

as Fitbit, Jawbone, etc, also contain electronic pedometers. The

inaccuracy of current pedometer monitors has been shown to

be around 9% [13].
In the procedure of transfer learning, the average speed (v)

is the bridge to connect the outdoor and the indoor information.

In an indoor environment, the average speed not only can

be computed by acceleration, but also can be obtained by

leveraging the third-party pedometers. Based upon the two

types of obtained average speeds, iLoom calculates two types

of corresponding arb. For each speed range, we update the

Acceleration Range Box by averaging the values of the two

arb. Then, we employ the updated Acceleration Range Box to

calibrate the dead reckoning approach.
Algorithm 2 illustrates how iLoom exploits pedometers to

optimize the existing Acceleration Range Boxes. Li, et al.

proposed that step frequency and step length has a linear

relation [17], we conduct curve fitting for collected data and

compute the factor values of a and b. Thus, if we obtain

the step frequency of people by pedometers, we can estimate

the step length of people. Also, once a user inputs his/her

known step length, he/she could calculate his/her step frequency

according to the linear relation. Based on these information,

we can modify the arb via pedometers on the mobile devices

by algorithm 2. The experimental performance of this approach

will be displayed in the evaluation section.

I. Indoor GPS Exception

Anchor Points were applied in location service systems [18].

They are the positions in the environment with unique sensing

signatures. Anchor Points can be used to reset the motion

traces if a user reaches one of them. They are classified to two

categories: 1) the points can be recognized by inertial sensors,



Algorithm 2 Pedometers Improve Acceleration Range Box

Input:
vi, Li - average speed, length steps of the pedometer user i
np, nA - number of pedometers, number of arb

Output:
The updated arb for each sample

1: for i=0; i < np; i++ do
2: Li ← a×Fi + b (or Fi ← a×Li + b)

// step frequency Fi and step length Li has a linear relation
3: Initialize: vi ← Fi×Li, j ← nA, cnt ← 0;
4: while j > 0 do
5: if |vi-vj | < ∆SR

// if the average speeds are in the same range, merge the
different arb. ∆SR is the threshold.
then

6: arbi ← arbi + arbj , cnt ← cnt+1;
7: end if
8: // Calculate the average value of different arb

arbj ← arbj / cnt , j ← j-1;
9: end while

10: end for

such as stairs, elevators, etc; 2) the points could receive GPS

on smartphones, as building entrances and windows.
In iLoom, we focus on the second type of Anchor Point.

For some entrances in an indoor building, by obtaining the

position information through GPS, they are often marked as

the initial positions of motion traces.
We have discussed the indoor/outdoor detection in Section

II.B. There exists an interesting phenomenon: although indoors,

sometimes people receive GPS samples from the windows or

other places near the outdoors. When we predict whether the

environments are indoors or outdoors, these samples are seen

as false information and should be disposed. These samples,

named Indoor GPS Exception (IGE), provide an accuracy

of better than 3.5 horizontal meters [14]. They also can be

employed for calibrating some obvious deviation caused by

dead reckoning: while a user is conducting dead reckoning for

building the motion trace, when he/she is near the window and

gets a IGE, if the estimated position by dead reckoning is out

of the range of IGE, we can assume the estimated position has

a serious deviation, thus, we will adopt the position of IGE to

replace it.
Here we conducted an experiment: a user of iLoom walks

and stops arbitrarily in a room for 10 minutes. He receives 12

indoor GPS samples from the window. The GPS has a range of

errors within 3.5 meters. As illustrated in Fig. 5, two samples

in the 12 IGE are helpful for dead reckoning. Therefore, IGE

samples can calibrate the obvious deviation.

J. Reduce the Training Burden

So far, our analysis is based on a single user. Before a

person uses iLoom to obtain his/her locations, a procedure of

light-weight training is required. If we extend our approach

to more users, the training task can be further reduced. In

the multi-user model of iLoom, we provide an approximate

solution for reducing the training load: People with the similar

ages and heights often have the similar movement habits [19].

We categorize users into different groups by ages and heights.

Fig. 5 Indoor GPS Exceptions calibrate the deviations caused by dead

reckoning. The generated motion trace using IGE is closer to the

ground truth.

For each group of people, after data collection and transfer

boosting we construct a special Rc. The relation is stored in

a hash map on the remote server. When the user logs in the

iLoom system, after inputing his/her age and height, he/she

will get a correlated Rc to assist the indoor localization.

III. EVALUATION AND CASE STUDY

A. Experiment Setup

We build a prototype of iLoom on the Android platform

(version 5.0) and evaluate its performance on two types of

smartphones (Samsung Galaxy S7 and Google Nexus 5). The

smartphones are equipped with standard sensors that include

GPS, accelerometer, barometer, light and magnetic sensors. We

adopt DynamoDB on Amazon Web Services (AWS) as the

remote server to store data. The frequency of data uploading

is 1 Hz. Initially, we focus on the single-user model. The user

conducted the experiments on the campus of Michigan State

University. A user of iLoom walks arbitrarily and stores sensing

data in both the outdoor and the indoor environments. Fig. 6

depicts the scenarios and routes from which the user collects

data. For the outdoor scenario, the user carried the smartphone

and walked and stopped for 4 hours. The time period of each

sample is 10 seconds. Since we expect the outdoor training data

can profile the user body’s walking behaviors, the smartphone

was in the user’s pocket to avoid the noise that includes making

a phone call and swinging the hand with the smartphone. For

the indoor scenario, the user walked 10 minutes with the

smartphone. The smartphone was in the user’s pocket or on

the user’s hands, which includes dead reckoning noise. The

sampling frequency is 0.2 HZ. After collecting data indoor and

outdoor, we built the Ro and Ri for people’s motion behaviors.

The Euclidean distance between the ground truth and estimated

position is defined as the metric of localization error.

B. Acceleration Range Box Evaluation

Fig. 7 (a)-(b) represent the distributions of average speed

for outdoor and indoor collections. Although most samples

are between the range from 1.2m/s to 1.6m/s, the two

distributions have some differences. After applying the transfer

learning approach on them, the combination data distribution

varies as Fig. 7 (c).
We first validate the effectiveness of the Acceleration Range

Box. When the user is walking in the indoor scenario, iLoom

records the average error of distance within the growth of

time. The user adopts the Average Acceleration Range Box



(a) Data collection in an outdoor
environment.

(b) Data collection in an indoor
environment.

(c) A 200×200 area for data collection. Each yellow
mark represents a sampling of GPS.

Fig. 6 Collect data in different scenarios while a user of smartphone is walking.
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Fig. 7 The procedure of transfer learning. The bars in each figure represent the average speed range and the associated acceleration range box.

After adding parts of samples from (a) to (b), the combined samples in (c) have more useful samples.
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Fig. 11 Motion traces are generated by dead reckoning and iLoom.

(arb) as a constraint while computing the motion trace by dead

reckoning [5]. As Fig. 8 shows, the localization accuracy is

greatly and consistently improved by approximately 60%. We

repeat the comparison 8 times and the results remain the same.

The shadow areas in Fig. 8 refers to the confidence intervals.
Based upon the results in Fig. 8, we measure the performance

of transfer boosting. We use the transferred arb to replace orig-

inal arb trained from the indoor environment. Fig. 9 provides

the experimental results of the comparison: although all three

groups can enhance dead reckoning, the two groups using

the arb combined with transferred outdoor and indoor data

outperform the group just using arb from indoor environments.

In iLoom, we choose SVM and SVMt [15] as the classifiers. In

Fig. 9, both of the two classification algorithms fit the transfer

Duration (Hours) 0.2 1 2 4 8

Deviation (Meters) 0.532 0.432 0.399 0.388 0.384

Dining Hall Residence Hall Library

IODetector 87.24% 88.61% 91.43%

GAPO 94.32% 95.05% 95.15%

learning approach, and SVMt performs better than SVM. By

repeating the experiments 10 times, the final error of indoor

localization is less than 0.35 meter.
When we transfer the instances with higher weight in outdoor

dataset T to Ri(v, arb), the proportion of the transferred

instances (p%) is significant. If we do not transfer enough

instances in T to Ri(v, arb), iLoom cannot achieve the optimal

localization accuracies. If iLoom transfers excessive instances

to Ri(v, arb), the instances that are not similar to the instances

in Ri(v, arb) may include noise. In our evaluation, the optimal

p% value is 74.8% for SVMt and 73.5% for SVM.
Depending on the above experiment conditions, we concen-

trate on the relations between indoor localization errors and the

duration of outdoor data collection. By measuring the average

indoor deviations of iLoom users under different time lengths

of outdoor data training, Table IV supports our claim 1) as the



(a) Indoor localization results of user1 walking in different indoor/outdoor
scenarios. The indoor localization accuracies increase gradually.

(b) Indoor localization results of user2 walking in different indoor/outdoor
scenarios. The indoor localization accuracies increase gradually.

Fig. 12 Evaluation results of iLoom over three days.

duration of outdoor data collection increases, a user’s indoor

localization accuracy improves gradually; 2) iLoom is able to

enhance indoor positioning without long-term and extensive

pre-training.
Fig. 11 illustrates that, in a real indoor scenario (160m ×

40m), the user of iLoom walked on the path that was preset.

The trace generated by dead reckoning includes errors such

as walking through the walls and leaving the map of building.

Via adopting transfer learning, the trace provided by iLoom

rectifies the localization errors caused by dead reckoning.

C. Performance of GAPO

In this subsection, we analyze the approach of preprocessing

(GAPO) in detail. The function of GAPO is to distinguish data

samples’ environments. To validate GAPO is efficacious, we

provided a control group. One group is the experiment result

adopting GAPO and the other group does not use it. As shown

in Fig. 10, we can conclude the group without preprocessing the

false data cannot achieve the improved performance. To further

explore the performance of GAPO, we execute the environment

detection for three different buildings by receiving data samples

both indoors and outdoors. Table V provides the comparison

of Pe values between GAPO and the other classical detection

approach (IODetector). GAPO attains higher successful rate

than IODetector. Although GAPO may cost more energy for

smartphones due to the usage of GPS, the GPS is not working

all the time for a user. The energy consumed is within a

reasonable range.

D. Multi-User Model

iLoom supports two working models: single-user and multi-

user. We have evaluated the single-user model in the above

discussion. For multi-user model, the users’ heights are highly

related to the users’ average speeds [19]. In this paper, we did

such an experiment: we collected 15 volunteers’ average speeds,

accelerations and heights. The heights of these volunteers are

approximately categorized to five levels: 1.65m, 1.70m, 1.75m,

1.80m, 1.85m. All the volunteers are 20-30 years old. For each

user, we obtained the corresponding Rc for them. The person

with higher height has a larger range of accelerations. The

relation from height to Rc is stored in the iLoom system. Once

a user inputs his/her height, iLoom will choose the approximate

height for him/her and provide a related Rc for the user.
In practice, the multi-user model is not as accurate as the

single user model. For example, a person with 1.69m will

be assigned the 1.70m type’s Rc, but there still exists some

Model / Site Entrance Exit Hallway Office PC Lab

Single-user 0.424m 0.476m 0.392m 0.287m 0.398m

Multi-user 0.454m 0.503m 0.422m 0.314m 0.423m

differences. We compare the differences of the two models:

for single-user model, we adopt the above experiment (the

height of user is 1.73m); for multi-user model, we let the

user with the height of 1.73m choose the type of 1.75m’s

information and did the control group measurement as what

the user did in single-model. We choose 6 observation points

to record the deviations of the two models. The differences

between the single-model and multi-model are listed in Table

VI. Even though the multi-user model has more errors than

single-user model, the localization results of multi-model is

still convincing.

E. Long-Term Observation of iLoom

We extended the procedure of outdoor data collection to

3 days. Users walked, stopped, and kept smartphones out of

their pocket in their daily life. IFig. 12 indicates 1) the indoor

localization accuracies increase with profiling more outdoor

motion data and 2) the indoor positioning accuracies are within

0.4m even in challenging conditions where a user walked

in different indoor/outdoor scenarios. We believe the transfer

boosting approach reduces the influence of the samples that

cannot represent user’s normal walking styles.

IV. RELATED WORK

A. Traditional Indoor Localization

Traditional indoor localization methods can be categorized

by two types: device-based and device-free. For device-based

approaches, the user often carries a specific receiver to

communicate with the sender. Cricket [2] estimates the distance

of the corresponding beacons by using the differences in

propagation speeds between RF and ultrasound. Other systems

such as Bat [20] and SpotFi [21] are all based on certain

infrastructures. Although these systems have accurate results,

the costs of systems and inconvenience of the devices limit

the further development. For device-free approaches, it often

uses signal fingerprinting to locate people [3], [22]. In the

training phase, RSSI signal strengths are collected at each

location when a person moves around an indoor environment.

When the system begins to localize a person on line, matching

is conducted by using the maximum likelihood standard: the

system will chose highest probability position by comparing



with the known training data. Unfortunately, these approaches

often need a long-term and complex training procedure.

B. Smartphone Based Approaches

Dead reckoning [5] is a common method to estimate user’s

current location by physical formulas. But the accelerations

obtained from sensors often include some noise, for example,

the direction obtained from accelerometer is different from the

people’s real direction. The accumulative errors grow sharply

within the time increase. To address the problem, Unloc [6]

employs a virtual landmark to assist dead reckoning. The

landmark is the sensing signatures naturally existing in an

indoor environment. Dead reckoning tracks locations between

different landmarks. Other approaches use computer vision and

sensing approaches [7], [8], [23], [24] to do indoor localization

on smartphones. Although all of these above methods do not

require other devices, they need complex signal processing and

recognition in indoor environments.

C. Transfer Learning

Transfer Learning [9], [16] is learning in a new task

through the transfer of knowledge from a related task that

has already been studied. Transfer learning has been applied in

many research areas, such as web document classification,

emotion detection, and computer vision recognition. For

indoor localization, Pan [25] uses regression modeling to

locate people. It identifies several cases of knowledge, and

transfers localization models over time, across space and clients.

Nevertheless, WILP is a traditional infrastructure approach and

requires lots of context-aware analysis. Compared to the related

work, iLoom does not rely on any extra device except for a

smartphone. The procedure of off-line training for a certain

scenario is not necessary. Just turning on the GPS option on a

smartphone, by transferring learning the accurate and sufficient

GPS information from outdoors, the motion behavior model

stored on the smartphone can help dead reckoning.

V. CONCLUSION

In this paper, we propose one key conjecture: could we

transfer a user’s worthwhile outdoor motion information

to indoor movement data and enhance indoor localization?

We present iLoom, an indoor localization mechanism that

utilizes the users’ outdoor walking features. iLoom selects

the dead reckoning approach to locate people indoors and

introduces an Acceleration Range Box to optimize the user’s

received accelerations. To build an accurate Acceleration Range

Box, the sensed data from indoor and outdoor environments

are processed: since certain people’s moving behaviors are

proximate in indoor and outdoor environments, we combine

the data describing the outdoor motion by accurate GPS

and the data of the indoor movements via transfer boosting.

Experiments and simulations from 15 users and 3 real buildings

demonstrate iLoom not only improves dead reckoning with

unattended mode but also does not need extra infrastructure

and data training for certain scenarios. Based upon the real

environment studies, the accuracy of indoor localization reaches

up to 0.28∼0.51 meter.
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