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Thermal comfort evaluation for mechanically conditioned
buildings using response surfaces in an uncertainty analysis
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An uncertainty analysis methodology is proposed to aid in quantifying the risks of thermal comfort under-performance posed by
changes to variations in physical and operational characteristics of a building and its environment. This includes those implemented
for building energy savings, peak electricity load reductions, or those due to climatic changes. Using building performance data as
input, a response surface methodology is used to develop a model to predict building thermal performance for ranges of user-defined
design variables. This model is verified for accuracy using in- and out-of-sample data. Uncertainly analysis is then used to estimate
the probability of achieving an acceptable threshold of thermal comfort performance. A case study is presented to demonstrate the
implementation and interpretation of the results of this methodology, which evaluates the effects of a 1-h demand response event
on thermal comfort of a residential mechanically-conditioned building. The case study finds that a second-order response surface
provides a reasonably accurate model of thermal comfort. For the studied single family home, compared to varying the air exchange
rate, the indoor set-point temperature has a greater influence on achieving an acceptable level of thermal comfort.

Introduction

In many developed countries, on average, people spend
80–90% of their time indoors (U.S. EPA 1989; Leech et al.
2000) in buildings. The thermal comfort of the occupants,
a measure of the satisfaction with the indoor environmental
conditions, is thus of great importance, and has been linked
to the health, well-being, and productivity of occupants (e.g.,
Schellen et al. 2010; Akimoto et al. 2010; Almeid-Silva et al.
2014). To provide a comfortable and productive environment,
buildings also consume a significant amount of energy, and
are one of the largest consumers of energy in the United
States (U.S. Energy Information Administration [EIA] 2013).
To reduce energy use and costs, and to reduce greenhouse gas
emissions, buildings continue to be targeted through energy-
efficient retrofits. To improve electric grid reliability peak load
reduction programs also targets buildings, in particular their
system operations. However, as these measures are imple-
mented, these changes to building physical and operational
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characteristics also affect buildings’ thermal performance and
thus can also affect occupant thermal comfort. These effects
should be carefully considered.

The ability to achieve a comfortable indoor environment
for occupants is influenced by many design variables, including
building envelope and systems characteristic, internal loads,
and external environmental conditions. Many of these are
summarized in Table 1. Their values can also vary signif-
icantly between buildings. These same design variables can
also influence the energy (kilowatt-hour) and instantaneous
load (kilowatt) contributions of a building. As HVAC use
is often a large consumer of energy in a building, particu-
larly in the United States, its operational strategies are also
a common target for energy and peak load reduction pro-
grams and strategies (Sinao 2014; Gyamfi et al. 2013; Cetin
and Novoselac 2014). Other changes to building characteris-
tics, such as reduction to the air exchange rate (air changes
per hour [ACH]) through weatherization, have been targeted
by large government funded programs (U.S. Department of
Energy [DOE] 2015). To date, however, there have been lim-
ited studies that provide a methodology that can evaluate the
tradeoffs between peak load and energy savings measures, and
thermal comfort.

Mathematical models developed by Fanger (1967, 1970,
1972) provide the basis for the most widely accepted in-
ternational thermal comfort standards for mechanically
conditioned buildings, including ASHRAE Standard 55
(ASHRAE 2010), International Standards Organization
(ISO) 7730 (ISO 2005), and EN 15251 (CEN 2006).
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Table 1. Common design variables influencing thermal comfort in mechanically conditioned buildings.

Characteristics Variables
Effects on building interior conditions when variable

increased

HVAC Cooling/heating set-point (◦C);
deadband of thermostat (◦C); HVAC
cooling capacity (kilowatts)

Increase/decrease interior temperature; increase
allowable temperature variation above/below
set-point; increase HVAC ability to remove heat from
interior

Building envelope Air exchange rate (1/h); windows/doors,
walls, roof, ground U-value (W/m2-◦C);
window area, interior shading (%);
thermal mass (W/m2-◦C)

Increase in unconditioned outdoor air entering
building interior; increase in heat transfer between
interior and exterior conditions; increase and reduce,
respectively, effect of solar heat gains (temperature) to
interior; slow and attenuate the effect of exterior
conditions on interior conditions

Internal loads Large appliances (W); occupants (W);
electronics (W); hot water heater (W);
lighting (W)

Increase in internal heat (temperature) and/or
moisture (humidity) gains

Climatic conditions Outdoor temperature (◦C); outdoor
humidity (%); solar radiation (Wh/m2)

Increase internal heat gains (temperature); increase
internal moisture gains (humidity); increase internal
heat gains (temperature)

Conditions that are considered in defining acceptable ther-
mal comfort of building occupants include (1) environmental
factors such as: dry-bulb air temperature (◦C), mean radi-
ant temperature (◦C), air speed (m/s), and humidity (%), and
(2) personal factors consisting of: metabolic rate (met), and
clothing insulation (clo) (ISO 2005; ASHRAE 2013 ). The
polygons in Figure 1 represent the typical thermal comfort
zones (TCZs) for cooling and heating seasons according to
ASHRAE 55 (ASHRAE 2013), however changes in assumed
level of clothing (clo) and metabolic rate (met) may be ad-
justed, resulting in a different location and size of the TCZ.
This model however, evaluates thermal comfort at a single
point in time, whereas evaluation of the effect of changes to
a building’s characteristics on thermal comfort requires deter-
mining thermal comfort over a longer period of time. More
recent methodologies for defining the level and severity of
thermal comfort/discomfort over a period of time have been
proposed by a number of authors. The percentage outside
range (Carlucci and Pagliano 2012), hourly performance in-
dex (Hensen and Lamberts 2012), and hours of exceedance
(Olesen and Brager 2004) methodologies, discussed in Stan-
dard ISO7730 (ISO 2005), count the number of hours inside
and outside the TCZ, represented as a fraction of the total
number of hours evaluated.

To quantify the effect of the building design variables on in-
door environmental performance, including thermal comfort,
building energy modeling (BEM) is often used, computer-
based tools for developing a model of a building and its sys-
tems, and simulating its performance at a design location and
over a defined period of time. However, carrying out a large
number of BEM simulations to evaluate different scenarios
is time-consuming, particularly if the goal is to take into ac-
count the uncertainties of the input variables used to evaluate
building performance. Various techniques to simplify the eval-
uation of BEM have been proposed. Eisenhower et al (2012)
developed a simplified normative model and calibrated it to
BEM, based on the techniques discussed in other works (ISO

2007; CEN 2005). Reduced-order models have also been devel-
oped for the purpose of building control strategies (Goyal and
Barooah 2012; Dewson et al. 1993). Artificial neural networks
(ANNs) have also been used to develop models to predict
building energy use and thermal comfort (Yuce et al. 2014;
Chang et al. 2015; Ashtiani et al. 2014).

The response surface methodology (RSM) is another tech-
nique for the study of the relationship between a measured
response and a set of design (input) variables (Box and Wilson
1951). The use of RSM has several advantages. Between the
upper and lower bounds of each variable considered, RSM
includes a large amount of information from a limited num-
ber of controlled experiments. It can be used in reducing the
computational cost of expensive analysis methods such as fi-
nite element analysis (Guan and Melchers 2001; Reh et al.

Fig. 1. Psychometric chart showing TCZs for cooling and heating
seasons according to ASHRAE 55 (ASHRAE 2013).
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Fig. 2. Multi-step methodology for RSM/uncertainty analysis
for evaluating building thermal comfort.

2006; Ren and Chen 2010) and computational fluid dynamics
(Khalajzadeh et al. 2011; Madsen et al. 2000; Gel et al. 2013).
One advantage of using response surfaces is that it results in
a function that can be used as input into uncertainty analysis,
such as Monte Carlo simulation. In addition, after its initial
development, obtaining a model response is extremely fast.
The use of RSM has been extended to many applications re-
lated to buildings. This includes modeling naturally ventilated
buildings (Shen et al. 2012, 2013), predicting the air diffusion
performance of displacement-ventilations offices, and deter-
mining effects of parameters on heat exchangers (Khalajzadeh
et al. 2011) and complex structural evaluation application of
buildings (Kang et al. 2010; Leira et al. 2005). However, it has
not been used in evaluating building thermal comfort.

Another challenge in the use of BEM is in assessing the
uncertainty associated with the results of a BEM. Several
previous studies have assessed the uncertainty in the design
parameters and assumptions. de Wit and Augenbroe (2002)
studied uncertainties in building parameters and established
ranges of building characteristics that may be considered for
use in building energy simulation. Building thermal comfort
has also been evaluated using uncertainty analysis (Parys et al.
2012; Hopfe and Hensen 2011; Breesch and Janssens 2010;
Heo et al. 2012; Hopfe et al. 2007; Encinas and De Herde
2013). The findings from these previous studies related to
the uncertainty are helpful where choices of design variable
probability distribution functions and associated statistics are
needed. However, a methodology that utilizes BEM to evalu-
ate thermal comfort that can both provide a simplified model
of a building’s thermal comfort response and take into account
the uncertainty associated with this is needed.

This study applies the RSM and uncertainty analysis to
building thermal comfort modeling. While the RSM has been
applied in other applications related to buildings, this research
study is the first known use of the RSM for building thermal
comfort analysis. Ultimately, for a given set of design condi-
tions, the main objective is to provide a measure of how likely it
is that a building’s thermal performance will meet the thermal
comfort requirements needed to satisfy the occupants given a
set of design variables. A five-step methodology is proposed
and discussed. This is followed by a case study applying the
proposed methodology to a real-world application. The pro-

posed methodology may be implemented for a mechanically
conditioned building as a tool to evaluate thermal comfort for
any user-defined range of a set of design values. This method-
ology may be applied both in the design phase of a building
when evaluating energy savings strategies versus the risk of
discomfort, and for existing buildings in which operational or
physical changes to the buildings are being evaluated for use
in building energy use or peak electricity use reductions.

Methodology

A multi-step methodology is proposed to evaluate building
thermal comfort; it is presented schematically in Figure 2. It
is divided into five main steps: (1) design variable definition,
(2) BEM, (3) response surface development, (4) uncertainty
analysis, and (5) result interpretation. Each of these steps is
outlined in detail next.

Step 1: Variable definition for response surface model
development

In evaluating options for construction or operational changes
of a building, different design variables are considered. These
design variables are used as inputs to build and define the
response surface. These design variables can include phys-
ical building characteristics such as window area and wall
construction, operational characteristics such as thermostat
set-points and fan schedules, or climatic characteristics, such
as the location of the building and potentially even future
climate change scenarios. Building, operational, and climatic
characteristics that may affect thermal comfort in buildings
are included in Table 1. To develop a response surface for use
in this study, the design variable vector, X = {X1, X2, . . .,
Xn} of size n must be chosen. The greater the number of vari-
ables n there are, the greater will be the computational effort
required to evaluate all possible combinations of the design
variable values employed to construct the response function.
A larger number of design variables allows definition of a more
generalized response surface to describe the response of the
building.

Each design variable Xi is defined by its mean value μi ,
a standard deviation σi , and a probabilistic distribution func-
tion. In order to determine the probability distribution of each
variable, appropriate distributions from the literature and re-
lated studies may be used. An Anderson-Darling test may also
be performed on a dataset to determine the best distribution
fit. Upper and lower bounds are chosen for each design vari-
able. Following Wong (1985) and Faravelli (1989), xi,high and
xi,low are selected as upper and lower bounds (ri standard de-
viations above and below the mean, respectively) for design
variable Xi to be evaluated in the RSM (Equations 1a and
1b):

xi,high = μi + riσi , (1a)
xi,low = μi − riσi . (1b)

Caution should be exercised if the RSM is used in un-
certainty analysis, to evaluate the system response outside of
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the upper and lower bounds of each design variable, as do-
ing so may provide an inaccurate assessment of the response
function S. Values forμi , σi , and the probabilistic distribution
function for each design variable Xi may be selected based
on documented studies of building characteristics as well as
operational and climatic considerations (Persily 1998, 1999;
Air Tightness Testing & Measurement Association [ATTMA]
2010; Chartered Institution of Buildings Services Engineers
[CIBSE] 2000; Offermann 2009; ASHRAE 2004; Persily et al.
2010; Parker et al. 1990; Roberts and Lay 2013). They may
also be chosen following a data collection effort or by using
engineering judgment. For example, if a set of existing homes
is being considered for energy-efficient retrofit strategies and
one of the design variables is the window area (measured in
square meters), the window area may be measured for each of
the buildings considered and a mean, standard deviation, and
distribution function may be derived directly from the data.
The choice of ri in Equations 1a and 1b determines the upper
and lower bounds of the range of values of each variable for
which the RSM may be assumed to be valid. As an exam-
ple of the use of engineering judgment, if indoor temperature
is a variable, previous studies have reported average indoor
temperatures, such as those summarized by Roberts and Lay
(2013; Hammersley et al. 1964). These could be related to the
study for which the response surface model is being developed,
to define design variable ranges, statistics, and distributions.

Step 2: BEM simulations

In the present study, to establish the desired response surface,
input data on the thermal comfort performance of the sub-
ject building are needed. Such data include consistent time-
interval data of, typically hourly, the indoor operative tem-
perature (◦C), or both the dry-bulb temperature (◦C) and the
mean radiative temperature (◦C). Data indicating relative hu-
midity (%) or humidity ratio (grams/kilograms) of the indoor
air could also be included. The required data may be obtained
using results from BEM or from field-collected building per-
formance studies. The use of building energy simulation results
is the more cost-effective methodology as field testing is ex-
pensive and takes far more time and effort than simulations.
In the present study, BEM is used to produce the indoor oper-
ative temperature and humidity ratio data; it is assumed that
air speed criteria (ASHRAE 2010; Gyamfi et al. 2013) for
thermal comfort are met in the analyses.

In additional to a consistent time interval for measurements
or simulated values, both the design period of evaluation over
the calendar year and the design time of day must be cho-
sen. In reporting the results of the methodology employed in
this study, all the assumptions, including those discussed here,
should be explicitly stated so that the results are not misinter-
preted, as discussed by Carlucci and Pagliano (2012).

A design period is defined by a start day dstart and an end
day dend . Thus, the day of simulation d is such that dstart ≤ d ≤
dend , and the total number of days evaluated is dtot. One year
(dstart = 1; dend = 365, dtot = 365) may be used to capture the
behavior of the building accounting for all seasons of the year,
a single year is a typical period of time used in BEM studies.

If a year-long period is used, since there are different TCZ
criteria for heating and cooling seasons, a reasonable division
of the year into heating and cooling seasons may be made
consistently for all the BEM simulations considered. Portions
of the year representing a cooling season or a heating season
may each be evaluated, provided the same period of time of the
year is considered for each season in all the BEM simulations
carried out.

Heating and cooling only occur during certain months of
the year. These seasons can be determined using monthly av-
erage temperatures (MATs) and typical meteorological year
(TMY3) data (Wilcox and Marion 2008), or the 99% annual
winter and summer and design temperatures as defined by
ASHRAE (ASHRAE 2009). All months where the MAT or
99% design temperature is less than 18.9◦C are defined as the
heating season, and all months where the MAT is greater than
18.9◦C are defined as the cooling season. Additional informa-
tion on this methodology is included in the Building Amer-
ica House Simulation Protocols (Wilson et al. 2014) used for
building energy simulation.

Design times of day must also be chosen for evaluation;
the time interval representing the time of simulation each day
hd is such that hd,start < hd < hd,end , where hd,start and hd,end
represent the starting hour and the ending hour of each daily
simulation. The total number of time interval data each day is
hd,tot, and the total for the design period is htot = hd,totd, where
d is the number of days in the design period. If a building is
occupied all day, and hourly time interval data are used, then
hd,start = 1, hd,end = 24, andhtot = 24d.If the building is only
occupied at specific times during the day, such as is the case for
an office building, then one may have, for example, hd,start =
8, hd,end = 17, andhtot = 9d. Note that design times of day for
evaluating thermal comfort may only consider occupied time
periods since thermal comfort may not be of interest when
there are no people in the building.

A nonlinear response surface is constructed using 3n BEM
simulations. This includes a simulation at each combination
of the n design variables (Xi; i = 1 to n) at three design points,
xi,high , xi,low, andμi . Once the BEM simulation results are gen-
erated, the percent of time inside and outside the TCZ must be
computed from each simulation. With a defined TCZ, such as
in Figure 1, each simulated time interval data point for the se-
lected design time period is plotted on the psychometric chart
to determine its location relative to the TCZ for that season.
The percent of simulated data points that lie outside the TCZ,
Sk,data , where k = 1 to 3n, is computed using Equations 2a
and 2b, where a value of 1 for each time interval data point
indicates that the simulated point is outside the TCZ while a
value of 0 indicates it is inside the TCZ:

Sk,data =
(∑dtot

d=1

(∑hd,end
h=hd,start

cd,h

)
dtot∗htot

)
k

, (2a)

cd,h =
{

1← (outsideTCZ)
0← (insideTCZ) . (2b)

If a large number of design variables are being evaluated,
the number of simulations needed (3n) for the full factorial
design may become computationally expensive. In this case,
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methodologies such as the fractional factorial design (Gunst
and Mason 2009), Box–Behnken design (Box and Behnken
1960), or D-optimal design (Silvey 1980) may be used to reduce
the number of BEM simulations needed. These designs are
desirable when the extreme points are expensive or impossible
to test, or when the full factorial design requires too many
runs for the amount of resources or time available.

Step 3: Response surface development

The third step in the methodology adopted involves develop-
ment of the response surface. RSM generally assumes the use
of a low-order polynomial response function S, which is an
approximation of the measured response of the system under
consideration. This response function may be defined using
a set of linear and/or nonlinear terms made up of n design
variables X = {X1, X2,. . ., Xn} and including a set of model
coefficients bi (i = 1 to n) for linear variation and bij (i, j =
1 to n) for quadratic variation, along with a random experi-
mental error term ε. Simpler response functions are often of
first-order (Equation 3a) or second-order (Equation 3b) forms
(Khuri and Mukhopadhyay 2010):

S (X) = bo +
n∑

i=1

bi Xi + ε, (3a)

S (X) = bo +
n∑

i=1

bi Xi +
n∑

i=1

n∑
j=1

bi j Xi Xj + ε. (3b)

Additional information on response surface creation is dis-
cussed in previous works (Meyers et al. 2009; Khuri and
Mukhopadhyay 2010; Meyers et al. 1989). Least-squares re-
gression is used with the selected design variables (Step 1) and
the BEM simulations (Step 2) to build the response surface. To
evaluate the goodness of fit of the regression model to the data
the R2 (coefficient of determination) value is used. A good fit
of the response surface to the data is indicated by an R2 value
close to unity. Evaluation of goodness of fit should be con-
ducted on both in-sample data used to develop the response
surface as well as on out-of-sample data that were not used to
develop the response surface, but are within the range of the
upper and lower bounds of the design variables considered in
the study.

Step 4: Uncertainty analysis

The response surface model developed following BEM simu-
lations is an approximate representation of a real-world based
situation based on assumptions and approximations. To ad-
dress uncertainty in the underlying design variables, X, a limit
state function (Equation 4), g (X; Tacc), is used to quantify
the probability of exceeding the acceptable percent of time
Tacc outside the TCZ. Note that S (X) represents the predicted
number of hours outside the TCZ based on the response sur-
face defined by Equation 3b, which is built using the design
variables. One assumes that all the design variables, Xi (i = 1

to n), can be treated as independent random variables:

g (X; Tacc) = Tacc − S (X) . (3)

To achieve compliance with generally accepted standards
(ASHRAE 2010), as a part of the design of a building, the
maximum allowable percent of time outside the TCZ must be
stated. Monte Carlo simulations (Hammersley et al. 1964) can
be used with assumed distributions for all the design variables
(X) and with the developed response surface, S(X), and the
specified value of Tacc. A “failure” in a single Monte Carlo
simulation is defined to have occurred when S(X) exceeds Tacc
or, effectively, when g (X; Tacc) is less than zero. Crude Monte
Carlo (CMC) simulation, i.e., Monte Carlo simulation with-
out any additional variance-reduction refinement, is used in
this manner to estimate the failure probability Pf, which is the
probability of exceeding the allowing percent of time outside
the TCZ. An alternative procedure referred to as the first-
order reliability method (FORM) can also be used to estimate
Pf; in this procedure, the notion of a limit state function (here,
g (X; Tacc)) is used along with the design variable vector defi-
nition to estimate Pf more efficiently than with CMC simula-
tions. The accuracy in Pf estimates based on CMC simulations
increases with the number of simulations.

Step 5: Result interpretation

The methodology presented in the preceding four steps pro-
vides a means of evaluating a range of physical, operational,
and environmental characteristics of a building as well as its
proposed environment from the point of view of thermal com-
fort. The results of Steps 1 to 3 provide the response surface
function (a polynomial built using BEM simulations) that de-
fines the percentage of time outside the TCZ based on n design
variables. This response surface may then be used to evaluate
the thermal comfort response of the considered building due
to other values of the design variables that lie between the
upper and lower bounds used to build the response surface.
Multiple sets of CMC simulations allow the systematic study
of the design variables and their importance. An example of
the overall analysis and interpretation of the results is provided
in the illustrative case study presented next.

Case study

There are many different applications of the proposed method-
ology that can benefit from understanding building occupants’
risk of exceeding a specified number of hours outside the TCZ.
A case study is presented to describe the effect on thermal
comfort of executing a single hour of air conditioner-based
demand response during the summer months for homes in
Austin, TX. This involves turning off the air conditioner of
homes during times when there is greatest load on the elec-
tric grid. According to historical data from Electric Reliability
Council of Texas (ERCOT), this often occurs at around 5:00
pm during the summer (ERCOT 2013). In this case study, one
assumes that the air conditioner is shut off for 1 h from 5:00
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Table 2. Design variables in case study.

Property
Design
variable μn σn rn

Probability
distribution xn,high xn,low

Set-point
temperature
(ºC)

x1 24a 0.93a 3 Normal 26.7 21.1

Airflow
(ACH, 1/h)

x2 0.26a 0.07a 3 Normal 0.47 0.05

aPecan Street Research Institute Dataset (2011–2013); dataset on building energy surveys in 2011 on residential buildings in Texas.

pm to 6:00 pm. The characteristic home used in this study is
a single-family detached home (114-m2, three-bedroom, two-
bathroom home) located in Austin, TX. The studied home
includes a single-stage residential HVAC system with an out-
door compressor and condenser unit and indoor air handling
unit. Cooling and heating are electric-based from a heat pump.
The air distribution system and duct system are located in
the attic. The size of the HVAC system was fixed based on
Manual J (Rutkowski 2011) sizing calculations for the studied
climate zone assuming a constant cooling set-point and the
mean values of the properties of the studied variables listed
in Table 2. Internal loads are based on typical occupancy
and internal load schedules for residential buildings from the
Building America Energy Simulation Protocol (Hendron and
Engebrecht 2010). These include major household appliances,
including a refrigerator, clothes washer and dryer and dish-
washer, as well as other miscellaneous loads. The building en-
velope properties are based on the building code requirements
of the International Energy Conservation Code (2009) for this
climate zone. This code specifies minimum thermal properties
of the building envelope for newly constructed buildings. R-
values of the ceiling, walls, and windows are R-30, R-13, and
R-2, respectively, with a window solar heat gain coefficient of
0.30. The window area was assumed to be 15% of the total
exterior wall surface area.

Austin, TX is located in a hot-humid climate zone,
ASHRAE climate zone 3a (ASHRAE 2013). To simulate the
outdoor conditions of this climate zone a TMY3 (Wilcox
and Marion 2008) weather file was used, which is developed
from weather data from Class I weather station data. Based
on this data, during the summer time period of study (May
1–September 30), the dry-bulb temperature ranges from 6.1◦C
to 38.9◦C with an average and median temperature of approx-
imately 26◦C. The cooling degree days (CDD) total 2537 using
a reference temperature of 10◦C. The relative humidity during
this period ranges from 22% to 100%, with an average and
median of 71%–72%. The corresponding dew point tempera-
tures were average and median of 20◦C–21◦C with a range of
5◦C to 26◦C.

Two design variables (n = 2) are chosen as a case study;
these include the average indoor cooling set-point tempera-
ture (◦C), assuming a single zone model, and the whole-home
air exchange rate (ACH, hr−1). These design variables directly
affect the two main variables that determine thermal com-
fort: temperature and relative humidity. The set-point tem-
perature directly affects the indoor temperature. The level of

ventilation indirectly affects relative humidity. During the
summer period of study when changing the HVAC system use,
in this case study due to a demand response event, these are
particularly important. During this period, infiltration brings
moisture into a house in a humid climate, thus the indoor
relative humidity can increase due to increased ventilation.
The air-conditioning unit dehumidifies a home, however since
the thermostat is driven by the total load, and not just the
ventilation-caused loads, an increase in ventilation also can
mean higher relative humidity. In addition, these design vari-
ables are easily adjusted by the building owner or occupant
of the building. The cooling set-point temperature may be
changed through adjusting the thermostat settings and the
air exchange rate may be adjusted through weatherization
techniques. This methodology can be expanded to include
additional design variables, included those listed in Table 1.
However two are chosen to provide a proof of concept of
the proposed methodology. Set-point temperature determines
the target indoor temperature of the building under consid-
eration and directly affects the indoor thermal comfort. The
upper and lower bounds of the set-point temperatures were
to be within the upper and lower limits of the TCZ. The air
exchange rate (ACH) affects the amount of unconditioned ex-
terior air that is exchanged with conditioned interior air. A
higher ACH means that when there is a difference between
the outdoor and indoor conditions, the indoor conditions
follow outdoor conditions closely, such that the HVAC sys-
tem must work longer to meet the desired indoor conditions.
ACH can vary significantly across residential buildings, with
newer homes with tighter building construction having a lower
ACH, and older, leakier homes having a higher ACH. The
upper and lower bounds were chosen to cover a range of val-
ues common in newer buildings, or older buildings in which
weatherization measures have been installed. Details related
to these design variables are presented in Table 2. The mean
and standard deviation values for each of the design vari-
ables were determined using a building energy use dataset col-
lected for single family homes in the Austin, TX area (Pecan
Street Research Institute 2011). An Anderson–Darling test
was performed to determine the best distribution fit to the
data for each of the design variables based on the referenced
dataset. Only the summer, i.e., the cooling season, is evaluated
such that dstart = 121, dend = 273, and dtot = 153. All data are
in hourly intervals and all hours of the day are included
in the analysis such that hd,start = 1, hd,end = 24, and htot =
24dtot = 3,672 h. Since there are two design variables, 32
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Table 3. Building energy simulation results.

Operative temperature

Number

Set-point
temperature

x1 (◦C)
Airflow x2,
ACH (1/h)

Hours
outside TCZ

Outside TCZ
(%)

Exceedance
(%)

Below
operative

temperture
(%)

Above
operative

temperature
(%)

1 21.1 0.26 34 0.9 0.9 0.0 0.9
2 23.9 0.26 23 0.6 0.5 0.2 0.3
3 26.7 0.26 470 12.8 3.6 3.5 0.1
4 21.1 0.05 30 0.8 0.8 0.0 0.8
5 23.9 0.05 20 0.5 0.4 0.2 0.2
6 26.7 0.05 403 11.0 3.5 3.5 0.0
7 21.1 0.47 45 1.2 1.2 0.0 1.2
8 23.9 0.47 31 0.8 0.6 0.2 0.4
9 26.7 0.47 695 18.9 3.8 3.5 0.3

or 9 simulations are carried out to construct the response
surface.

BEM simulations were run using the EnergyPlus software
(U.S. DOE 2007) and available weather data for Austin, TX
(Wilcox and Marion 2008). The output data of the BEM in-
cluded the hourly operative temperature and humidity ratio.
A matrix laboratory (MATLAB) code was created and run us-
ing the output data of the BEM, to determine the number of
hours outside of the TCZ. The TCZ assumed clothing insula-
tion of 0.5–1 clo and a metabolic rate of 1.1 met. The resulting
number of hours outside the TCZ for each BEM simulation
is shown in Table 3. Since both the operative temperature and
the humidity ratio influence this value, their relative contribu-
tions are also included in Table 3. Plots of the extreme cases
of 20 h (0.5%) and 695 h (18.9%), Simulation numbers 5 and
9 in Table 3, are shown in Figures 3a and 3b.

Least-squares regression is carried out to develop the non-
linear response surface function, S(X) (Equation 5). The esti-
mated R2 is 0.982. A comparison of the predicted (RSM) and
simulated data indicating the time outside the TCZ is shown
in Figure 4a. To verify the accuracy of the RSM, a set of eight
randomly selected values for X1 and X2 are chosen within
the upper and lower bounds from Table 2. BEM simulation
was conducted using these values and evaluated against the
predicted values from the RSM; these are shown in Figure 4b
with an R2 of 0.965:

S (X) = 4.73− 0.41x1 − 0.80x2 + 0.032x1x2

+0.0089x2
1+0.176x2

2 + ε (4)

For this case study, three values of Tacc are considered cor-
responding to 5%, 7%, and 10% of the time when it is ac-
ceptable to be outside the TCZ. These values were chosen to
explore the response of a range of acceptable levels of ther-
mal comfort, and are based on recommendations in standard
EN 15251 (CEN 2006), a similar standard to ASHRAE 55
(ASHRAE 2013), which discusses thermal comfort criteria.
EN 15251 suggests that no more than 3%–5% of the occupied
hours of a given period of study should be outside the limits of
the specified TCZ. This study thus explores a range of values,

from this recommended percentage to two times this percent-
age (5%–10%). The limit state function g (X; Tacc) is evaluated
for each of these values of Tacc to estimate the probability that
each of these design allowable percentages of time outside
the TCZ is exceeded. A total of 10,000 CMC simulations are
run using the design variable characteristics given in Table 2.
Since the RSM was developed using energy simulations out
to ±3σ for each variable, the polynomial function is valid for
the values within this range of each design variable.

Figures 5a to 5e summarize the results of this simulation.
Figures 5a, 5c, and 5e show the estimated probability of ex-
ceeding the maximum allowed percent of time Tacc outside
the TCZ as a function of air exchange rate for fixed set-point
temperatures for Tacc equal to 5%, 7%, and 10%, respectively.
Similarly, Figures 5b, 5d, and 5f show estimated of the proba-
bility of exceeding the maximum allowed percent of time Tacc
outside the TCZ as a function of set-point temperature for
fixed air exchange rates for Tacc equal to 5%, 7%, and 10%,
respectively. By choosing a single fixed set-point temperature
(as in Figures 5a, 5c, and 5e), or a single fixed air exchange
rate (as in Figures 5b, 5d, and 5f) trends in how sensitive the
probability of exceeding Tacc is to the other varying parameter
are evident.

In Figure 6a, the variation in probability of exceeding the
maximum allowed percent of time Tacc outside the thermal
comfort as a function of air exchange rate is studied for a
single indoor set-point temperature fixed at nearly its mean
value (24◦C) and for three different values of Tacc (5%, 7%, and
10%). Similarly, in Figure 6b, the variation in probability of
exceeding the maximum allowed percent of time Tacc outside
the thermal comfort as a function of set-point temperature is
studied for a fixed single air exchange rate fixed at its mean
value (0.26 ACH (h−1)) and for three different values of Tacc
(5%, 7%, and 10%).

Discussion

The value of the use of the response surface and uncertainty
analysis is that by using the response surface developed, a con-
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tinuous range of values for any design variable may be evalu-
ated easily without carrying out any additional BEM simula-
tions beyond what were run to construct the response surface.
The results of this case study show that with increasing values
of Tacc, the probability of exceeding this allowed percentage
of time outside the TCZ decreases; this is not unexpected. If
occupants are more tolerant of a greater amount of time out-
side the TCZ, the risk of exceeding that threshold will naturally
be reduced. Comparing the influence of the indoor set-point
temperature (◦C) and that of the air exchange rate (ACH,
h−1), one finds that a change in set-point temperature has a
greater effect on the probability of exceeding Tacc than does
the air exchange rate. Comparing a home or set of homes with
a lower average indoor cooling set-point temperature (22.5◦C)
to a higher one (26.5◦C), the probability of exceeding any
selectedTacc value increases by 70% to 100% in all cases (Fig-
ures 5b, 5d, and 5f). On the other hand, homes with a lower
value for air exchange rate (0.15 ACH (h−1)), compared to
those with a higher average value (0.4 ACH (h−1)) leads to
a change in the probability of exceeding Tacc by between 3
and 20% (Figures 5a, 5c, and 5e). The influence on changes
to the probability of exceeding Tacc for the range of values of

Tacc studied (5%–10%) is greatest at high air exchange rates
(above 0.35 ACH (h−1)) and at higher set-point temperatures
(25◦C–26◦C) (Figures 6a and 6b).

For the single family home evaluated in this case study, the
results of the response surface model development and the
uncertainty analysis provide combinations of the design vari-
ables that will meet specified thermal comfort requirements of
the occupants. The results of the uncertainty analysis quan-
tify the likelihood that these specified comfort requirements
are met. For example, if an occupant of the considered build-
ing wants to have 90% confidence (i.e., Pf = 10%) that he/she
will be outside the TCZ only 5% of the time, the indoor set-
point temperature can be set as high as 24.5◦C as long as the
air exchange rate is extremely low. At a higher air exchange
rate (around 0.5 ACH), typical of an older home, the set-
point temperature must be set to 23.3◦C, more than a degree
lower. The graph presented in Figure 7 shows upper bounds
of acceptable parameters for the case study home covering
various situations where the 90% confidence and 95% con-
fidence curves correspond to Pf values of 10% and 5% of
the time outside the TCZ (when Tacc is set at two different
values).

Fig. 3. BEM hourly data results for specific simulations. a. With the largest number of hours (x1 = 26.7◦C, x2 = 0.47 1/h) outside the
TCZ (shown in blue). b. With the smallest number hours (x1 = 23.9◦C, x2 = 0.05 1/h) outside the TCZ (shown in blue).

Fig. 4. Comparison of the percent of time outside the TCZ. a. Based on the in-sample BEM simulations and the response surface
prediction. b. Based on the out-of-sample BEM simulations and the response surface prediction.
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Fig. 5. Probability of exceeding the maximum allowable percent of time Tacc outside the TCZ. a. Variation with air exchange rate
for different set-point temperatures, Tacc = 5%.b. Variation with temperature for different air exchange rates, Tacc = 5%.c. Variation
with air exchange rate for different set-point temperatures, Tacc = 7%.d. Variation with temperature for different air exchange rates,
Tacc = 7%.e. Variation with air exchange rate for different set-point temperatures, Tacc = 10%.f. Variation with temperature for
different air exchange rates, Tacc = 7%.

Note that the results in Figure 7 show how the uncertainty
analysis with Monte Carlo simulation can be used to address
specific “design” requirements where one is interested in com-
binations of the design variables (set-point temperature and
air exchange rate, here) to meet desired TCZ levels with a
target level of confidence. An alternative and more efficient
approach to Monte Carlo simulations is to use “inverse re-
liability” approaches where the target level of confidence is
the starting point and candidate values of the design variables
are directly derived using information on the underlying ran-

dom variables (Winterstein et al. 1993; Saranyasoontorn and
Manuel 2004a, 2004b, 2006).

Limitations

There are several limitations of the present study. The main
one is related to the sources of possible error in the results that
arise from each of the five steps in the methodology. The results
are limited by the uncertainty in the statistics and probability
distributions of the design variables. In some cases, required
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Fig. 6. Probability of exceeding the maximum allowed percent of time Tacc outside the thermal comfort for situations. a. Where the
indoor set-point temperature is fixed at its mean value (x1 = 23.9◦C). b. Where the air exchange rate is fixed at its mean value (x2 =
0.26 ACH (1/h)).

statistics and distributions may not be readily available. One
solution then is to use expert engineering judgment in select-
ing suitable statistics (de Wit and Augenbroe 2002). BEM, as
it employed in this study, relies on many simplifying assump-
tions; also, not all the various design variables are considered
in the RSM. Assumptions both in the BEM and RSM need to
be recognized and should provide context and bounds for situ-
ations the end results can be applied to, when the methodology
presented here is applied.

In the development of the response surface for this study,
three values for each design variable were considered in de-
veloping the response surface; thus, 3n BEM simulations were
used. Additional points beyond the upper and lower bounds
and the mean value for each design variable would improve
the accuracy of the response surface. This would also increase
the computational time needed to develop the response sur-
face from the BEM simulations. When compared to both in-
sample and out-of-sample BEM simulations, the response sur-
face provides a good fit with 1.8% and 3.5% errors, respectively.
However, particularly in cases where the amount of time out-
side the TCZ is low, the response surface can predict values
even below zero. However, these cases near 0% of time out-

Fig. 7. Acceptable combinations of indoor set-point temperature
(◦C) and air exchange rate (ACH, 1/h) for specified values of
Tacc that guarantee desired levels of confidence (1–Pf) in meeting
thermal comfort requirements of occupants.

side the TCZ are less likely to represent situations in which
the occupant thermal comfort is significantly affected. CMC
simulation studies also have limitations. CMC probability
estimates have uncertainty associated with them; this is only
reduced when a large number of simulations are carried out.

The methodology proposed here can benefit from addi-
tional analysis and development beyond that dealt with in the
limited scope of this study. The case study considered a single-
zone building energy model evaluation and used one indoor
set-point temperature. If a larger and more complex build-
ing is evaluated, an average or weighted average of multiple
indoor parameters at different locations of the building may
need to be considered. The proposed methodology may also
be applied to other building performance characteristics that
are affected by changes to the building’s physical and opera-
tional properties as well as to other environmental parameters.
In the present study, the authors only took into account the
amount of time outside the TCZ; in general, it may be of
interest to consider the severity of the indoor environmental
conditions, relative to ideal indoor conditions. For instance,
instead of weighting all the data points with temperatures be-
tween 28◦C and 32◦C equally as not meeting thermal comfort
requirements, one could assign a greater weight to higher tem-
peratures, as they likely bring more severe thermal discomfort.
In addition, while the temperature and humidity conditions
within the TCZ are defined as being at acceptable levels to oc-
cupants, not all occupants will be satisfied to the same degree.
All conditions within the TCZ may represent different levels
of comfort rather than a uniform comfort level especially far
from the edges of the thermal comfort. These are subjects of
ongoing and future work.

Conclusions and applications

This research study proposes a five-step methodology to assess
the thermal comfort of a building based on building energy
simulations over ranges of selected multiple design variables.
Using the results from these simulations, a response surface
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describing the percent of time outside the building occupants’
TCZ is constructed. This response surface provides an em-
pirically derived polynomial function that relates building
thermal comfort performance to the design variables. Uncer-
tainty analysis is then carried out by defining a limit state func-
tion that incorporates the response surface and a user-defined
limit or threshold for acceptable thermal comfort conditions.
The results provide bounds on design variable values, such as
the air exchange rate and set-point temperature, that will meet
the design needs with a specified level of confidence (e.g., one
can arrive at combinations of design values that can guaran-
tee with 95% probability that the percent of time spent outside
the TCZ will not exceed some specified value, say 10%). This
methodology is applied to a case study to demonstrate the
overall procedure and result interpretation.

There are many potential applications of the proposed
methodology beyond the case study. It is the authors’ be-
lief that the use of uncertainty analysis and response surface
development is the first of its kind that has been applied to
such studies related to building energy and occupant comfort.
Today, BEM is used mostly for the development of build-
ings, such as to achieve desired green building energy ratings;
this study suggests that the same building energy model may
also be used to conduct a thermal comfort analysis to assess
the effects of proposed design strategies on thermal comfort.
This may prove valuable in balancing the risk of discomfort
against energy savings. It is easy to envision an extension of
the methodology presented here to consider complex multi-
variable comfort “zones” beyond the single one used here. Fi-
nally, for utility companies that target customers for demand
response, tiered electricity rate structures and other load re-
duction and load shedding techniques, the results of the pro-
posed methodology may prove valuable in identifying the best
customers to target and in making recommendations to resi-
dential customers to aid in load shedding while assuming low
risks of thermal discomfort.
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