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The U.S. government has included green building policy in affordable housing programs for years. However,
little to no evidence is available to elucidate this policy’s efficacy in the context of energy performance and
financial savings. This paper reports a longitudinal study that investigates time effects of such policy on the
energy performance in low-income housing units. The researchers collected monthly energy use data over three
years from 310 residential units and conducted profile analysis and MANOVA. Results indicate that (1) green
buildings’ energy performance is consistent across years; (2) construction type, technology level, and apartment
size significantly and consistently affect energy use; and (3) occupant type inconsistently affects energy use.
Results suggest financial savings of $648 per year due to reduced energy usage in green buildings. The savings
equate to 9.3%, 5.6%, and 3.5% of annual income for extremely low-income, very low-income, and low-income
families, respectively. Savings represent a 26.6%-37.5% reduction of energy expenditure for low-income
households. Findings strongly suggest that green building incentives and the diffusion of green building practice

is resulting in affordable housing systems.

1. Introduction

Affordable housing has long been a national effort in the United
States. In the early decades of the implementation of the Housing Act of
1937 (Mo, Zhao, McCoy, Du, & Agee, 2017; Vale, 2007), the federal
government’s involvement was directly funding affordable housing
development including construction costs; while state and local public
housing authorities (PHA) covered the operational and maintenance
costs. In return, PHAs owned the properties and controlled the design,
construction, and tenant selection. Beginning in the 1960s, the U.S.
Department of Housing and Urban Development (HUD) started to
prioritize public-private partnerships that encouraged private devel-
opers to develop affordable housing by offering subsidies and vouchers
to offset development and construction costs. To date, the Low Income
Housing Tax Credit (LIHTC) program has become the largest and most
significant federal program for the production and preservation of af-
fordable housing for low-income families in the nation (Collinson,
Ellen, & Ludwig, 2015). Eligible LIHTC-assisted projects require that
20% or greater of residents have incomes below 50% of the area
median income (AMI) and 40% or greater of residents have incomes
below 60% of AMI. The federal government annually earmarks $6
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billion to the LIHTC program which has supported more than 2 million
residential units and retained a large tax credit portfolio (Khadduri,
Climaco, Burnett, Gould, & Elving, 2012).

Over the same 40-50 years, building energy use reduction has also
been a national effort. In the U.S. residential buildings account for at
least 21% of energy consumption and carbon emissions based on the
U.S. EIA (2016). This usage represents 20 quadrillion British thermal
units (BTU) and US$218 billion in energy expenditure. Many low-in-
come families are involved in energy poverty since they must allocate
significantly more of their household income to energy expenditures
than other households (Bird & Hernandez, 2012). Low-income house-
holds often live in homes that are not energy efficient and they are
unable to afford energy-saving measures (Guerra Santin, 2011;
Langevin, Gurian, & Wen, 2013). The broad concept of green building
can be defined as aspects of energy efficiency, sustainability, and en-
vironmentally friendly products (Adomatis, 2012; Hodges, 2005;
Tucker, Pearce, Bruce, McCoy, & Mills, 2012). In this research, the
authors focus on human-centered energy efficiency to measure the
performance of green building (McCoy, Zhao, Ladipo, Agee, & Mo,
2018). The focus on energy performance is consistent with LIHTC
policy.
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To improve building energy efficiency, the architecture, en-
gineering, and construction (AEC) industry has engaged in R&D for
building technologies. These technologies range from enclosure systems
advancements (e.g. spray-applied insulation and weather resistant
barriers, air sealing techniques, and high-performance glazing systems)
to sub-system advancements (e.g. inverter-driven heat pumps, efficient
lighting and appliances, and low-flow water fixtures). Green buildings
also provide a healthier built environment, addressing indoor en-
vironmental quality (IEQ) and occupant quality of life (Amiri,
Mottahedi, & Asadi, 2015; Baughman & Arens, 1996; Hoskins, 2003;
Singh, Syal, Grady, & Korkmaz, 2010; Singh, Syal, Korkmaz, & Grady,
2010; Spengler & Sexton, 1983). The U.S. Department of Energy (DOE)
has set long-term goals toward 50% energy reduction in buildings and
committed to catalyzing green buildings at a national level through
model building codes and supporting third-party green rating systems
(e.g. LEED, Energy Star, and EarthCraft).

As a part of this national effort, HUD and local housing finance
agencies (HFAs) have integrated green building rating systems into
state-led LIHTC programs. Financial support from the LIHTC programs
address essential barriers to green building implementation, including
higher initial costs of design and construction (Beheiry, Chong, & Haas,
2006; Lee, Chin, & Marden, 1995; Zhao, McCoy, & Smoke, 2015). At the
federal level, the LIHTC program does not mandate green building
rating programs for apartment development; however, the U.S. Internal
Revenue Service (IRS) specifies that energy efficiency shall be con-
sidered in state-level requirements for LIHTC development. In practice,
HFAs provide financing for affordable housing and are the agencies that
award the IRS credits. The IRS credits are distributed to developers
based on the Qualified Allocation Plan (QAP).

To date, all state PHAs have incorporated some form of green
building policy (e.g. discrete green building measures and/or green
building rating systems) into their QAPs. As listed in Table 1, the QAP
either requires LIHTC applicants (e.g., the developer or builder) to
participate in a green building rating system or encourages them to
achieve green building certification by offering additional scoring
points.

LIHTC is an ideal platform to gauge home energy efficiency; how-
ever, little to no research has fully utilized this platform to investigate
green homes’ energy performance and economic impact. This knowl-
edge gap prevents policymakers from a better understanding of green
building efficacy, particularly for low-income households. To address
part of this gap, as shown in Fig.1, this study has two objectives: (1) to
identify energy performance of LIHTC-assisted green buildings over
time, and (2) to determine economic impacts on low-income house-
holds as a result of these green buildings. In reaching the objectives, the
authors have conducted a longitudinal study on energy consumption of
LIHTC-assisted green buildings over 36 consecutive months from 2013
to 2016. Unlike cross-sectional studies that only reveal static homo-
geneity and heterogeneity, longitudinal study uncovers dynamic trends

Table 1
Summary of state-level LIHTC green building programs in the United States.
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Fig. 1. Diagram of research design and objectives.

of energy use and time effects of energy efficiency (Diggle, 2002). In
other words, this study focuses on whether or not energy performance is
stable, durable, and consistent over time in these green buildings. En-
ergy use trends and time effects unveiled from this study contribute to
the robust long-term decision-making for both energy and housing
policymakers. In this regard, the authors also discuss data-driven policy
implications based on analytical results.

2. Materials and methods
2.1. Data

Fig. 2 displays the 310 residential units across 16 developments in
the state of Virginia from which energy use data were collected.
Apartment-level electricity data were collected on a monthly basis from
May 2013 to April 2016 using an online benchmarking software. The
authors applied a method of geographic cluster sampling (or termed
area cluster sampling). The cluster sampling technique has been widely
used in research by many statistic agencies including the World Bank
(Himelein, Eckman, & Murray, 2013) and U.S. Department of
Agriculture (2016). In this research, the geographic clusters are based
on the metropolitan statistical area (MSA), a geographical region with a
relatively high population density at its core and close economic ties
throughout the area (U.S. Census Bureau, 2016). MSA is a result of
national standards for statistical purposes and has been adopted by
many federal agencies including the Census Bureau and HUD. The
sampling strategy aligns with the referenced national standards and,
therefore, allows for representing a larger population in each statistical
area and producing more accurate analytical results (Himelein et al.,
2013). To minimize the disturbance from missing data (Everitt, 1998;
Molenberghs & Verbeke, 2000), the study used longitudinal data with
complete records during the whole 3-year period.

Virginia is selected for data collection because it contains a large
number of LIHTC-assisted green apartments with considerable quality.
Since 2007, the Virginia Housing Development Authority has integrated

Certification Require Certification by State

Encourage by State

®LEED for Homes

® Home Energy Rating System
® EarthCraft House

® Enterprise Green Communities

Alaska, Arkansas, Arizona, California, Colorado, Connecticut, District of
Columbia, Delaware, Florida, Georgia, Idaho, Illinois, Indiana, Iowa, Kansas,
Kentucky, Nebraska, North Carolina, Louisiana, Massachusetts, Maryland,
Michigan, Minnesota, Missouri, Mississippi, Montana, New Hampshire, New

Hawaii, North Dakota, New Mexico, Pennsylvania,
South Carolina, Vermont, Wisconsin, West Virginia,
Wyoming

Criteria Jersey, Nevada, New York, Ohio, Oklahoma, Oregon, Rhode Island, South
® National Green Building Dakota, Tennessee, Texas, Utah, Virginia, Washington
Standard

® ENERGY STAR appliances

® Green Point Rated Multifamily
Guidelines

® Green Globes

® LEED for Neighborhood
Development
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Fig. 2. Geographical display of sampled residential developments.
Table 2

Longitudinal analysis periods.

Time Separation Period Month Duration Dominant Seasonal Load
Annual Y, May 2013-Apr. 2014 12 months Cooling/heating

Y, May 2014-Apr. 2015 12 months Cooling/heating

Ys May 2015-Apr. 2016 12 months Cooling/heating
Semiannual T, May 2013-Oct. 2013 6 months Cooling

Ty Nov. 2013-Apr. 2014 6 months Heating

T3 May 2014-Oct. 2014 6 months Cooling

Ty Nov. 2014-Apr. 2015 6 months Heating

Ts May 2015-Oct. 2015 6 months Cooling

Te Nov. 2015-Apr. 2016 6 months Heating

green building rating systems as an incentive for the state QAP (McCoy
et al., 2018). Virginia ranks in the top 10 in the nation and the first in
the southeastern region on recent LIHTC production: building more
than 2000 residential units per year. All of the sample developments
were built or renovated after 2009, making current green building
technologies available in the design and construction. Further, all
buildings sampled for this research were certified by the EarthCraft
green building rating system. The authors acknowledge that there are
other green building rating systems (e.g. LEED, Enterprise Green
Communities) available to policymakers and developers. The analysis
represented in this paper focuses only on EarthCraft certified develop-
ments in Virginia because (1) the EarthCraft program in Virginia’s QAP
represents the only accessible database with the detailed technical in-
formation of design and construction available for this type of analysis
and (2) 100% of the Virginia LIHTC project since 2007 elected to
pursue EarthCraft certification.

Data for energy analysis included monthly electricity use (kWh),
construction type (i.e., new or renovated), occupant type (i.e., family or
senior), technology level, climate, and conditioned floor area data.
Residential units were 100% electric in fuel source. Monthly electricity
use was sourced with residents’ consent and with help from property
managers. In 2013, the authors invited residents to an onsite educa-
tional meeting in the form of a “pizza party” at every development. As
part of the meeting, the study goals were introduced to residents, the
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energy efficiency of apartments where they lived, and energy efficiency
technologies placed within the apartments. The research team provided
a $25 gift certificate (financial incentive) to participants who filled out
a utility release form, a behavior survey, and agreed to provide access
to their unit’s electricity utility account. Meanwhile, the authors part-
nered with developers and property managers to collect data from the
development’s green building certification. Particularly, the certifica-
tion provides housing unit design specifications and a Housing Energy
Rating Certificate (HERC) document to measure the level of green
building technology and simulated energy performance (Zhao, McCoy,
& Du, 2016). The HERC is based on a score (termed HERS) that is a
nationally recognized asset scoring system in the U.S., of which 100
indicates an apartment built to current model code standards and lower
scores indicate higher energy efficiency. Other data for economic im-
pact analysis (e.g., local AMI values and electricity prices) were derived
from national census databases: the 2012-2016 American Community
Survey (ACS) and American Housing Survey (AHS).

Table 2 summarizes time separation and periods on an annual or
semiannual basis. For the annual-based separation, the authors ag-
gregated monthly energy data into 3 periods (i.e., Y3, Yo, and Y3) with a
duration of 12 months for each period. This time scale demonstrates
electricity use trends across the first, second, and third year. For the
semiannual-based separation, the authors aggregated energy data into 6
periods (i.e., Ty, To, ..., Tg) with a duration of 6 months for each period.
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Measurements at this time scale avoid bias due to discrepancies of
energy use between heating and cooling-intensive seasons. For ex-
ample, annual energy use may not change when a home has higher
consumption for cooling and lower consumption for heating. Virginia’s
heating season (climate zone 4A), often starts in November and ends in
April. Therefore, the two sets of time separation allowed this long-
itudinal study to analyze yearly and seasonal time effects.

2.2. Methods

Through longitudinal study, the authors performed three analytical
analyses: (1) profile analysis, (2) multivariate analysis of variance
(MANOVA) and (3) economic impact analysis. The authors separated
the 3-year duration into 12-month and 6-month periods to track long-
itudinal trends and utilized SAS v12 software for all analysis.

Profile analysis is a sequence comparison method that identifies
patterns between cohorts across time points. Mathematically, it is the
multivariate equivalent of repeated measures. Profile analysis can vi-
sualize patterns through graphs of data (e.g., plots and curves) and thus
is more informative when comparing the same dependent variables
between cohorts over multiple time points (Srivastava, 1987). Typical
to profile analysis, this work tested the pattern’s parallelism, level, and
flatness. The parallelism test seeks whether or not profiles have the
same trend across time points, which is reflected in the curve’s shape or
slope change. The level test checks if profiles have equal levels on
average (i.e., average energy use) across time points. The flatness test
identifies a profile’s time effect assuming its curve’s slope is 0. As a
supplement, matched-pairs t-tests were performed to confirm the ob-
served patterns.

The authors used profile analysis to visualize cohort effects of en-
ergy use across three years. Specifically, two sorts of cohort effects were
analyzed. One cohort sort is based on construction type and has two
cohorts: newly constructed buildings (hereafter termed New) and re-
novated buildings (hereafter termed Renovation). The other cohort sort
is based on occupant type and has two cohorts: units designed for senior
residents (hereafter termed Senior) and non-senior family residents
(hereafter termed Family). Based on HUD regulations (2013), senior
housing refers to facilities and communities for persons age 55 and
older. All cohorts under study were fixed and thus changes in time were
not confounded by cohort differences (Fitzmaurice, Davidian, Verbeke,
& Molenberghs, 2008). Therefore, results from profile analysis enabled
researchers to delineate the differences of energy use trends between
New and Renovation and between Senior and Family apartments and
occupants.

MANOVA analysis simultaneously analyzes the responses of many
correlated dependent variables. We use MANOVA to explore how var-
ious factors affect energy use and whether or not such effects change
over time. Specifically, the between-subject effect and within-subject
effect over time were tested (Fitzmaurice et al., 2008; West, Galecki, &
Welch, 2014). The between-subject effect represents a factor’s effect
across all building units, and the within-subjects effect represents a
factor’s repeated effect over time. Mathematically, the between-subject
effect was modeled by fitting the sum of the repeated measures to the
model effect; and the within-subject effect was modeled with a function
that fits differences in the repeated measures. In this study, the profile
function was employed to perform MANOVA on energy data over time
Y;-Y3, and the compound function was employed on data over time
T1-Te (Scheiner & Gurevitch, 2001).

The MANOVA analysis considers five specific effects (i.e., con-
struction type, occupant type, building technology level, climate, and
conditioned floor area). Eq. (1) expresses the multivariate regression
formula that models these effects. The five effects correspond to five
critical factors that directly and significantly affect home energy con-
sumption, which the literature refers to as: building, user, operation
systems, climate, and space (Anderson et al, 2017; Yu, Fung,
Haghighat, Yoshino, & Morofsky, 2011). In addition, the number of
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occupants were very similar across the sample and thus not included in
the analysis. The factor of climate is represented using the 10-year
average ratio of heating degree days (HDD) and cooling degree days
(CDD). The research team sourced HDD/CDD data from the U.S. NOAA
(2016) database. Other factor data were sourced from HERC documents
during data collection.

Ey
E;

E,=|."|=8y+ BCT + B,0T + ;BT + B,WT + f;HS
ElT

+ &, Vit= 1, 2, ,T (1)

where:

E;, = the electricity use at the ith residential unit during time
period t;

CT = the effect for construction type (i.e., New versus Renovation);

OT = the effect for occupant type (i.e., Senior versus Family);

BT = the effect for building technology level (i.e., HERS score);

WT = the effect of weather (i.e., the ratio of HDD/CDD);

HS = the effect for apartment size (i.e., the conditioned floor area).

Economic impact analysis is used to identify financial benefits from
energy savings. Energy savings were calculated by comparing observed
energy use for the sample to Virginia statewide average energy use. To
provide a holistic view, the researchers compared the energy savings to
the average of Virginia low-income households and to the average of all
Virginia households (U.S. EIA, 2016). The financial benefit is re-
presented in monetary value V with a rate of income R. The team then
converted benefits and prices into a 2014 dollar value ($) to mitigate
for inflation influence. V and R are measured using the following Egs.
(2) and (3), respectively.

S X (By X By)

V= (Ey X R)—

n 2)
V Xn
R =
Ziih 3)
where:

V = the annual financial benefit value (in $);

R = the annual financial benefit rate (in %);

E; = the observed annual energy use in the ith residential unit in
month j (in kWh);

Ep = the average residential energy use (in kWh);

P;; = the local utility price for the ith residential unit in month j (in
$/kWh);

P, = the average utility price (in $/kWh); and

I; = the local low-income threshold (in $).

3. Results
3.1. Descriptive analysis

Table 3 summarizes electricity use over time, based on annual and
semiannual delineations. 3-year overall electricity use is 533 kWh per
month and its standard deviation is 269. Electricity uses during Y;, Y,
and Y3 were 514, 558, and 525 kWh, respectively, close to the 3-year
overall use. The energy usage for the observed period was tested against
climate factor (i.e., HDD and CDD) and no significant difference of
energy usage was found across the three years Y;, Y5, and Y3 (F = 1.72,
p = 0.18). Results indicate high-performance buildings’ stable and
consistent energy performance across three years. Semi-annual elec-
tricity uses over Ty, T3, and Ts were 419.32, 466.54, and 471.33 kWh,
respectively. Semi-annual electricity use is lower than the 3-year overall
electricity use and each is significantly different from each other sta-
tistically (F = 5.04, p < 0.01). Similarly, electricity uses during T», T4,
and Te were 640.30, 664.53, and 577.30 kWh, respectively. Each time
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Table 3
Summary of energy use over time (kWh/month).
Separation Period Mean Std. Dev. Lower CL Upper CL Min. Max.
Overall 3-year 532.66 268.66 523.92 553.30 40.00 1906.33
Annual Y1 514.38 206.53 483.11 545.65 60.58 1704.67
Y2 558.46 233.05 523.18 593.75 48.76 1721.22
Y3 525.17 244.16 488.20 562.13 64.00 1608.42
Semiannual T 397.89 198.68 386.20 452.45 70.00 1503.00
Ty 630.86 247.27 607.82 672.78 51.17 1906.33
T3 457.55 230.98 434.60 498.47 57.49 1660.84
Ty 659.32 276.76 630.63 698.42 40.00 1781.67
Ts 471.66 249.74 436.35 506.31 56.33 1668.00
Te 578.67 269.74 540.45 614.39 71.67 1756.67
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Fig. 3. Scatter plots of energy use over time showing correlations.

period was slightly higher than the 3-year overall use and significantly
different statistically as well (F = 4.05, p = 0.02). The differences in-
dicate that units use more energy in heating seasons than cooling sea-
sons and results confirm that electricity use fluctuates by season. In the
next section, the correlation analysis explores these fluctuations.

Fig. 3 displays an array of scatter plots showing the correlation of
electricity use across seasons. The plots show that electricity uses
during T, T3, and Ts were closely correlated, and electricity uses
during T,, T4, and T¢ were closely correlated. For example, the corre-
lation between T; and T3 was stronger than between T; and T,. Spe-
cifically, the highest correlation of electricity use (r = 0.908) occurred
between T3 and Ts, indicating a strong linear association. Results con-
firm previously-identified fluctuations and quantify the trend. Scatter
plots also indicate a slight decrease in correlation due to increasing
durations between the observation periods. For electricity use one year
apart (i.e., across two time periods), the correlation between T; and T4
(r = 0.577, longer duration) was weaker than that between T, and T,
(r = 0.712, shorter duration); or the correlation between T, and Ts
(r = 0.728, longer duration) was weaker than that between T, and T3
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(r = 0.809, shorter duration). The resulting variability suggests the
effect of external factors on electricity use, such as weather or occupant
behavior across years. In addition, most off-diagonal values in the plots
were lower than 0.9, indicating little multicollinearity and therefore a
stable model for MANOVA. In other words, the predictive power and
reliability of the model as a whole were satisfied (Hill & Lewicki, 2006).

3.2. Profile analysis

Fig. 4 illustrates the profile analysis results showing the cohort ef-
fects of energy use on an annual basis. In Fig. 4a, the profile analysis
results are separated by construction type and present parallelism, level
effects, and an absence of flatness. Parallelism indicates differences by
type (comparing slopes), level effects indicate differences by electricity
use (y-axis), and flatness (or absence thereof) indicates differences (up
or down) over time (x-axis).

The two slopes are nearly parallel, indicating similar electricity use
patterns between New and Renovated apartments. The slope of the new
(mean = 576.57 kWh) units are uniformly higher than of the
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Fig. 4. Energy use trends across Y;-Y3 by (a) construction type and (b) occu-
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Renovated (mean = 504.42kWh) units, indicating a consistent level
difference. The difference of 72.15kWh is statistically significant con-
firmed by the matched pairs t-test (t9.39, p = 0.01). The slopes indicate
an absence of flatness (i.e., slope = 0) or a change in energy use over
time. Therefore, combined results suggest that the Renovated units
sampled used 12.5% less electricity than the New units. In Fig. 4b, the
profile analysis delineates absence of parallelism, level effects, and
flatness by occupant type. The two slopes diverge, indicating different
energy use patterns between Senior and Family occupants. The slopes’
level effects become moot due to a lack of parallelism. The matched
pairs t-test confirms no significant level difference (t = 1.66, p = 0.24)
statistically across the sample by occupant type. The slopes are not flat
(i.e., slope = 0), indicating an effect of time on energy use. Therefore,
results suggest that Senior occupants may not have consistently used
more energy than Family occupants (i.e., non-seniors) in the sample.
For example, seniors typically prefer higher set points, which leads to
more consumption during heating but less during cooling — thus can-
celing each other out over a full year. The further analysis below se-
parates for the heating and cooling periods T;-Tg to test this idea of
seasonal changes.

Similarly, Fig. 5 illustrates the results of profile analysis showing
cohort effects of electricity use on a semi-annual base. The profile slopes
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o
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Fig. 5. Energy use trends across T1-Te by (a) construction type and (b) occu-
pant type.
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indicate a pattern of fluctuation. In Fig. 5a, the profile analysis by
construction type depicts parallelism, level effect, and an absence of
flatness. The two slopes are nearly parallel, indicating similar energy
use patterns between New and Renovated units. The slope of the New
unit sample is consistently higher than that of the Renovation unit
sample, indicating a consistent level difference. The difference is also
statistically significant based on the matched pairs t-test (t = 7.23,
p < 0.01). The slopes show no flatness (i.e., slope = 0), indicating a
change in energy use over time. Therefore, results confirm previously
identified consistent electricity use differences between new and re-
novated housing units. Fig. 5b indicates an absence of all three, though:
parallelism, level effect, and flatness. Similar to Fig. 4b, the energy use
slopes intertwine with each other early, indicating different energy use
patterns between family and senior residents. The slopes are nearly
overlapping, indicating a moot level difference. The matched pairs t-test
identifies the level difference is not statistically significant (t = 1.20,
p = 0.24). The slopes are not flat (i.e., slope = 0), indicating an effect
of time on energy use. Additional matched pairs t-tests on energy use
indicate no statistically significant difference (t = —0.63, p = 0.60) for
cooling-intensive periods (T;, T3, and Ts) but a statistically significant
difference of 59.61 kWh (t = 6.02, p = 0.03) for heating-intensive
periods (T, T4, and Tg). These results strongly suggest that the senior
residents used 9.9% more electricity for heating than family residents
(i.e., non-seniors). Such a finding is noteworthy and needs to be fully
considered by architects, engineers, builders, and energy raters for the
design and construction of units.

3.3. MANOVA analysis

Table 4 shows results of the MANOVA analysis of energy use across
Y1-Y5. The between-subjects effects from CT, BT, and HS are statistically
significant while that from OT and WT are not significant. The results
are consistent with the literature, indicating that the construction type
(F = 4.3, p = 0.04), building technology (F = 10.67, p = 0.01), and
floor area (F = 41.55, p = 0.01) significantly affect electricity use. The
results show that the two occupant types in this sample are not a sig-
nificant factor, indicating that electricity use is stable regardless of se-
nior residents or families and similar to the parallelism, level effect, and
flatness findings. Unlike literature that asserts weather as an impact
factor on energy use, the results do not produce a similar observation
and we speculate the difference as a result of the sample’s close geo-
graphic distance: because the sampled units were located in the same
state and climate zone, the effect of weather was minimal. Moreover,
the within-subject effect from WT is statistically significant (F = 4.05,
p = 0.02) and that from CT, OT, BT, and HS are not significant. This
finding indicates weather effect changes across Y;, Y,, and Y3 while
other effects do not. In other words, except the weather, no interaction
effect between time and other factors were found. It is noteworthy that

Table 4
MANOVA results of energy use across Y;-Ys.

Statistic Value F Num. df Den. df P
Between-subjects
CT 0.027" 4.37 1 164 0.04
oT 0.002 0.39 1 164 0.53
BT 0.065™" 10.69 1 164 <0.01
WT 0.013 2.06 1 164 0.15
HS 0.253" 41.55 1 164 <0.01
Within-subject
Time (Year) 0.033 2.65 2 163 0.07
CT X Year 0.010 0.81 2 163 0.45
OT X Year 0.036 2.95 2 163 0.06
BT X Year 0.015 1.24 2 163 0.29
WT X Year 0.050" 4.05 2 163 0.02
HS x Year 0.009 0.69 2 163 0.50
Note: " = significant at 95%, ~ = significant at 99%.
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Table 5
MANOVA results of energy use across T;—Te.

Statistic Value F Num. df Den. df P
Between-subjects
CT 0.027" 4.37 1 164 0.04
oT 0.002 0.39 1 164 0.53
BT 0.065" 10.69 1 164 <0.01
WT 0.013 2.06 1 164 0.15
HS 0.253" 41.55 1 164 < 0.01
Within-subject
CT X Year 0.010 0.81 2 163 0.45
OT X Year 0.036 2.95 2 163 0.06
BT X Year 0.015 1.24 2 163 0.29
WT X Year 0.050" 4.05 2 163 0.02
HS X Year 0.008 0.69 2 163 0.50
CT X Season 0.001 0.11 1 164 0.75
OT X Season 0.037" 6.03 1 164 0.02
BT x Season 0.017 2.83 1 164 0.09
WT X Season 0.044™ 7.24 1 164 0.01
HS x Season 0.004 0.72 1 164 0.40
Note: " = significant at 95%, ~~ = significant at 99%.

the effect of Time (year) is not statistically significant, indicating a
consistent energy use trend across three years. Findings suggest that the
effects of construction, occupant, technology level, and apartment size
are consistent over years and do not contain more of one effect during
one time period.

Table 5 shows results of the MANOVA analysis of energy use across
T1-Te. The between-subjects effects from CT, BT, and HS are statisti-
cally significant while OT and WT are not. Such results are consistent
with previous findings of MANOVA over Y;-Y3 (Table 4). Based on the
within-subject effect, MANOVA identifies three significant interaction
effects: WT X Year, WT X Season, and OT X Season. Similar to the
previous MANOVA analysis (Table 4), this finding indicates that the
effect of weather was not consistent, changing over times T;-T¢ and
makes sense as weather contains uncertainty and varies over time.
Unlike the previous MANOVA (Table 4), the statistically significant
interaction effect of OT X Season (F = 6.03, p = 0.02) indicates that
occupant behavior varies between heating-intensive and cooling-in-
tensive seasons. This finding explains the assertion from profile analysis
that Senior residents consumed more energy for heating and possibly
less energy for cooling than Family occupants.

In summary, the MANOVA analysis revealed three important find-
ings: (1) high performance buildings’ energy performance remains
consistent over multiple years; (2) construction type, technology level,
and home size have significant impacts on energy use and such impacts
are consistent over time; and (3) the two occupant types do not have a
significant impact on energy use long-term while this lack of impact is
inconsistent over shorter periods of time. Shapiro-Wilk tests were per-
formed to test the model’s normality. Results show that error terms of
the MANOVA model are statistically normally distributed at a 95%
confidence and suggest valid conditions of regression (Hill & Lewicki,
2006).

3.4. Economic impact analysis

Due to economic factors, it is assumed that low-income households
use less energy; however, low-income does not imply low energy con-
sumption. In fact, the energy use from low-income households has a
considerable variation and it can be 26% higher than that from higher-
income households (Berelson, 2014). A Tetra Tech (2012) report
highlighted the fact that low-income residents often consumed more
than higher-income residents because they were generally less aware of
energy literature or in housing without EE systems and technologies.
Therefore, this study used the average energy use of the Virginia po-
pulation as the baseline to analyze economic impacts and financial
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benefits.

According to the U.S. EIA (2016), residential electricity consump-
tion in Virginia was 1117 kWh/month on average; the electricity price
(per kWh) varied between $0.1066 and $0.1204 monthly and its
average was $0.1167/kWh. Based on HUD income limits, thresholds for
low-income, very low-income, and extremely low-income families are
80% AMI, 50% AMI, and 30% AMI respectively. Virginia’s AMIs from
2013 to 2016 were $76,900, $77,500, $78,400, and $77,500, respec-
tively. The research team used these economic data as inputs in Eqgs. (2)
and (3) to calculate economic impact.

As a result, the financial benefit value (V) due to energy efficiency in
LIHTC-assisted high-performance buildings equates to $648 per year
(i.e., $54 per month). The financial benefit rates (R) equate to 9.3% for
extremely low-income households, 5.6% for very low-income house-
holds, and 3.5% for low-income households. The average energy ex-
penditures for low-income households with income thresholds of less
than $20,000, $20,000-$39,999, and $40,000-$59,999 were $1719,
$1940, and $2433, respectively. Therefore, the financial benefits due to
energy efficiency as a product of LIHTC developments can reduce
26.6%-37.5% of energy cost for low-income households.

4. Discussion
4.1. Energy efficiency

This longitudinal study showed consistent energy performance
across three years and confirmed the reliability of green-rated devel-
opments that have energy efficient systems and technology. Findings
from data analysis strongly support the implementation of green
building systems into future policies and finance mechanisms. Energy
efficient housing is critical when considering overall energy demand
and the cost of infrastructure and consumption, as the impacts are
complex and far-reaching. In addition to environmental and economic
implications, the fiscal health of a household can be closely tied to the
cost burden of energy expenditure.

Prior literature and governmental reports have outlined the im-
portance and impacts of energy efficiency in the residential housing
sector (Dakwale, Ralegaonkar, & Mandavgane, 2011; Gillingham,
Newell, & Palmer, 2009); however, energy-efficient houses are not
necessarily easy to embrace. Historically, one of the primary barriers in
the market is the developer’s perception of higher initial costs asso-
ciated with these homes and lower economic benefits (reportedly due to
added personnel hours and use of innovative materials and technolo-
gies) (Konchar & Sanvido, 1998). In reality, residential units are con-
structed as inexpensively as permissible by market type to meet
minimum requirements for current local codes and certification stan-
dards. This “low-bid” mentality is meant to keep first costs low, thus
ensuring financial accessibility of clients and maximizing profitability
for developers and homebuyers alike. In the past, little consideration
was given toward energy efficiency and the additional expense of op-
eration (primarily air conditioning cost) that result from building to
minimum standards (Hayles & Dean, 2015; Ruparathna, Hewage, &
Sadiq, 2016). Such practices have been found to be common when at-
tempting to create housing accessible to low-income households. As a
result, housing built to target a cost point with short-term financial
motives and to minimum standards is often not as energy efficient as it
could be. This lack of energy efficiency creates higher operating costs
when compared to buildings where high-performance construction
methods and materials are employed. The longer-term returns to de-
velopers who build and maintain high-performance building projects
can be a remedy to this problem through improved maintenance costs
and utility costs (Beheiry et al., 2006). This work provides concrete and
durable evidence to support these decisions.
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4.2. Affordable housing

Data analysis indicates consistent cost savings in LIHTC multifamily
green buildings. As previously mentioned, the economic impact owing
to energy efficiency in green buildings is highly beneficial for low-in-
come residents by reducing up to 25% of total household expenditure.
Findings could have important economic and social implications that
extend beyond energy efficiency to the development itself (Freedman &
McGavock, 2015). Low-income housing developments affect the mix of
residents within neighborhoods not only by increasing the availability
of certain forms of affordable housing but also by potentially influen-
cing the attractiveness of communities to different types of households
and income levels. For example, LIHTC programs have provided
funding for about one-third of all new units in multifamily housing built
in the United States since the late 1980s (Khadduri et al., 2012). The
housing investment under LIHTC has measurable effects on the dis-
tribution of income within and across communities and provides po-
tential to leverage economic benefits through both affordable commu-
nities and energy savings.

Nevertheless, home energy expenditure posits a heavier weight in
the low-income household’s equation. Utility costs incurred from
household operation hold the potential to create a financial hardship.
The global trend of increasing energy consumption and cost will only
further the financial burden placed on these households. While this is
true for all households, irrespective of income level, it holds especially
true in the case of low-income households. For these households, the
cost of housing alone can constitute a significant portion of their gross
income. Since it is widely accepted that housing cost should ideally not
be more than 30% of one’s gross income (Schwartz, 2014), this study
illustrates how easily low-income households could spend more than
30% of their gross income on housing and associated operating costs.
Additional hardships could also be realized as month-to-month and
year-to-year energy costs are often not constant. As household energy
demands fluctuate, dependent on climate conditions, so do monthly
energy costs. This erratic monthly variance in the percentage of income
allotted for housing is destabilizing to household finances. All house-
holds are affected by energy expenditure and rising energy costs could
result in fewer households with the financial means to pay for in-
creasing future energy expenditure. Economically, households with the
lowest incomes are burdened the most by inflation. Therefore the
ability, resulting from adopting energy efficient technologies, to save
these operational costs contributes to stability in the household and the
community.

4.3. Energy retrofitting

Findings indicate that renovated buildings consistently demonstrate
improved energy performance compared to new buildings. This im-
provement can be 12.5% and does not change over time. The authors
speculate that this observation could be due to (1) the renovation
projects in the sample do not have mechanical fresh air systems like the
new construction projects in the sample; and (2) new construction units
have more permanent light fixtures and wall outlets than the renova-
tion projects, thus there is more opportunity for miscellaneous electric
loads (MELSs). Another possible explanation for the increased energy use
in the new construction sample could be due to the Jevon’s Paradox,
used in environmental economics to suggest that the increased effi-
ciency due to technological progress raises consumption (Polimeni,
Mayumi, Giampietro, & Alcott, 2015). This paradox is difficult to
measure empirically but makes sense for an interesting theoretical ar-
gument. Jevon’s Paradox suggests occupants in a new housing unit
might feel that they can use more energy because the unit is efficient,
while those in a renovated unit might not see it as new. Other possi-
bilities include the differences in technologies included in the unit or
other variability unable to be studied in this work, a limitation, but the
researchers are currently measuring a small subset of the sample using
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circuit-level energy monitors. Results also suggest the necessity of en-
ergy auditing and retrofitting to update the existing stock since it is not
always economically feasible to build new construction developments.

4.4. Occupant behavior

The industry has an energy efficiency information gap - a lack of
verified energy performance standards, real-time data, and post-occu-
pancy feedback for residential projects. Human factors researchers have
reported that people are generally poor at managing systems with lags
in information and delayed feedback loops (Brehmer, 1992; Sterman,
1989). In the context of this research, the human-building socio-tech-
nical system is ripe for reducing the information gap and lag to occu-
pants. Nahmens, Joukar, and Cantrell (2015) found that the top five
behavioral factors that have a significant impact on the energy bills of
low-income occupants are the following (in order of importance): (1)
cooling setpoint during summer; (2) energy-saving practices/behaviors
of households; (3) occupant behavior with respect to indoor environ-
ment quality; (4) occupant behavior with respect to lighting and elec-
trical appliances; and (5) heating setpoint during winter. Zhao, McCoy,
Du, Agee, and Lu (2017) identified four direct correlates between re-
sident behavior and home energy use: temperature settings (winter/
summer), use of a washer and dryer, and knowledge about building
systems. Zhao et al. (2017) also identified two indirect correlates (in-
creasing the effect) between technology and behavior: temperature
settings specifically during winter and knowledge about building sys-
tems. This study suggests that occupant type does not have a significant
impact on energy use while this lack of impact is inconsistent over time.
Behavior remains critical to understanding the progress in energy effi-
ciency and this variance highlights the potential.

Findings suggest that the senior occupants’ seasonal energy use
behavior present an opportunity for designers and engineers to improve
building technologies that can accommodate senior occupants. Future
investigations could focus on this subset of the population through
purposeful design and construction to reduce this usage. Senior housing
demand is increasing rapidly, as the U.S. 55+ population will reach
98.2 million by 2020 (Nyberg & Liu, 2009; U.S. Census Bureau, 2015;
HUD, 2013) and the senior housing construction market is estimated to
be between $250-270 billion (CBRE, 2015; Worzala, Karofsky, & Davis,
2009).

5. Conclusion

This empirical study investigates time effects of energy efficient
technologies and resident behaviors in green buildings for low-income
residents from 310 residential units across many years (2013-2016).
Results indicate high-performance buildings’ stable and consistent en-
ergy efficiency across these years; units use more energy in heating
seasons than cooling seasons; and results confirm that energy use
fluctuates by season. Results also indicate similar energy use patterns
for different construction types, while new units have significantly
higher energy usage levels than renovated units. There are different
energy use patterns based on occupant type as well, yet no statistically
significant level difference (t = 1.66, p = 0.24) while senior residents
used 9.9% more energy on average in heating than family residents
(i.e., non-seniors). Senior occupants are not consistently using more
energy than Family occupants over longer periods of time though.
MANOVA analysis reveals three important findings: (1) high perfor-
mance buildings’ energy performance remains consistent over multiple
years; (2) construction type, technology level, and home size have
significant impacts on energy use and such impacts are consistent over
time; and (3) occupant types do not have a significant impact on energy
use over long periods of time while this lack of impact is inconsistent
over short periods of time. The financial benefit value due to energy
efficiency in LIHTC-assisted high-performance buildings equates to
$648 per year (i.e., $54 per month). The financial benefit rates equate
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to 9.3% for extremely low-income households, 5.6% for very low-in-
come households, and 3.5% for low-income households. The financial
benefits due to energy efficiency reduce energy expenditure by
26.6%-37.5% for low-income households.

This work contributes to the body of knowledge pertaining to
human-environment interactions toward home energy efficiency since
humans spend roughly 90% of their lives in buildings. First, these
findings advance the understanding of human factors in the early de-
sign and construction phases, which reinforces current thinking of sci-
entists and engineers to maximize the effect of technology investments.
Second, these findings improve the understanding of the complex so-
ciotechnical system for low-income groups, which represents the
linkage of society, occupants, and the environment. These findings have
implications for policymakers on the integration of green building
policy into affordable and public housing systems. Results strongly
suggest the success of governmental support in overcoming barriers,
building public recognition of green buildings, and attracting industry-
driven investments on green buildings.

It is important to recognize the limitations of this work. First,
number of occupants was excluded in the model since the sample
provided little variance and correlation. Second, energy use analysis
focuses on electricity use only and energy costs in terms of $/kWh. The
analysis excludes utility taxes, tariffs, and services fees since the
variability in utility fee and municipal tax structures across the state
distort the energy use analysis. Third, although the findings are very
likely to be applicable for other regions, they are not tested against
differing geographic zones in this study.

This work provides an opportunity for future work. First, the sam-
ples in this study are green buildings certified by the EarthCraft rating,
one of the only datasets currently available that allow for this type of
inquiry. Other potential benefits of 3rd party rating systems may be
analyzed. Another future study can explore tailor-made green tech-
nologies to specific occupants (e.g., senior resident) in ways that green
buildings’ energy saving potentials can be maximized. For future work,
data collection can continue across a longer period of time and diverse
geography, which may enhance findings of the time effects and climate.
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