
A data-driven approach to optimized medication dosing: a focus
on heparin

Mohammad M. Ghassemi,
Laboratory for Computational Physiology, Massachusetts Institute of Technology, E25-505, 77
Massachusetts Ave, Cambridge, 02139, MA, USA, ghassemi@mit.edu, Tel.: (617) 253-0378

Stefan E. Richter,
University of California Los Angeles, Los Angeles, CA, USA, srichter@mednet.ucla.edu

Ifeoma M. Eche,
Beth Israel Deaconess Medical Center, Boston, MA, USA

Tszyi W. Chen,
Beth Israel Deaconess Medical Center, Boston, MA, USA

John Danziger, and
Beth Israel Deaconess Medical Center, Boston, MA, USA

Leo A. Celi
Laboratory for Computational Physiology, Massachusetts Institute of Technology, E25-505, 77
Massachusetts Ave, Cambridge 02139, MA, USA

Beth Israel Deaconess Medical Center, Boston, MA, USA

Ifeoma M. Eche: ieche@bidmc.harvard.edu; Tszyi W. Chen: twchen@bidmc.harvard.edu; John Danziger:
jdanzige@bidmc.harvard.edu; Leo A. Celi: lceli@mit.edu

Abstract

Purpose—To demonstrate a novel method that utilizes retrospective data to develop statistically

optimal dosing strategies for medications with sensitive therapeutic windows. We illustrate our

approach on intravenous unfractionated heparin, a medication which typically considers only

patient weight and is frequently misdosed.

Methods—We identified available clinical features which impact patient response to heparin and

extracted 1,511 patients from the multi-parameter intelligent monitoring in intensive care II
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database which met our inclusion criteria. These were used to develop two multivariate logistic

regressions, modeling suband supra-therapeutic activated partial thromboplastin time (aPTT) as a

function of clinical features. We combined information from these models to estimate an initial

heparin dose that would, on a per-patient basis, maximize the probability of a therapeutic aPTT

within 4–8 h of the initial infusion. We tested our model’s ability to classifying therapeutic

outcomes on a withheld dataset and compared performance to a weight-alone alternative using

volume under surface (VUS) (a multiclass version of AUC).

Results—We observed statistically significant associations between suband supra-therapeutic

aPTT, race, ICU type, gender, heparin dose, age and Sequential Organ Failure Assessment scores

with mean validation AUC of 0.78 and 0.79 respectively. Our final model improved outcome

classification over the weight-alone alternative, with VUS values of 0.48 vs. 0.42.

Conclusions—This work represents an important step in the secondary use of health data in

developing models to optimize drug dosing. The next step would be evaluating whether this

approach indeed achieves target aPTT more reliably than the current weight-based heparin dosing

in a randomized controlled trial.
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Introduction

Retrospective data provides a valuable opportunity to investigate clinical practice when

clinical trials are either unavailable, violate ethical boundaries for provision of best care, or

are too costly to effectively evaluate treatment effect heterogeneity across patient subsets

and clinical contexts [1]. Heparin is one example of a medication where retrospective data

provides valuable insight as clinical trials must exclude patients who exhibit a high

propensity for bleeding or severe complications caused by bleeding [2

The current dosing guidelines for unfractionated heparin (UFH) are weight-based, and arose

from a 1993 randomized control trial which showed that accounting for weight led to

therapeutic anticoagulation more rapidly than a standard care nomogram [3]. Given the risks

of mis-dosing UFH, we believe that weight-based heparin dosing alone is sub-optimal and

may place patients at unnecessary risk in the formative hours of their hospital stay. In this

paper we propose a potential solution to this issue by applying a novel perturbation of

multinomial logistic regression, designed to probabilistically estimate an optimal heparin

dose as a function of known feature values, and a specified therapeutic range. We chose

heparin as a candidate drug given its widespread use, clinical relevance, and inconsistency in

dosing practices across institutions but would like to stress that the technique is applicable to

any drug with an arbitrary therapeutic window.

Selecting the correct initial bolus and infusion rates for UFH are necessary to ensure that

anticoagulation, which is commonly measured by activated partial thrombo-plastin time

(aPTT), reaches a therapeutic window in a timely manner. Many clinicians consider a

therapeutic aPTT range to be 1.5–2.5 times the control value, however there remains
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significant controversy surrounding the optimal heparin dosing range [4–7]. The current

guidelines for UFH dosing at Boston’s Beth Israel Medical Center (BIDMC) prescribes an

80 (UI/kg × h) bolus followed by 18 (UI/kg × h) continuous IV infusion, with lower infusion

rates recommended for some indications. Guidelines also dictate checking aPTT 6 h after

the initial infusion of UFH, followed by continuous dose adjustments as required to achieve

a therapeutic aPTT within 24 h (See Appendix, Section 6 in supplement materials for the

complete BIDMC guidelines).

It is desirable to avoid supra-therapeutic aPTT at 6 h after UFH infusion, as it has been

associated with increased bleeding, with further worse outcomes for supra-therapeutic aPTT

at 12 h [8]. While the relationship between initial heparin dose, efficacy, and safety has been

well described in the literature, the risk factors for sub-and supra-therapeutic aPTT response

to the use of UFH is less well understood [9]. To the best of our knowledge, the only

recognized risk factors for supra-therapeutic aPTT are higher weight-normalized initial rate

of heparin infusion, older age, and female gender [8, 10]. Renal impairment inhibits

excretion of heparin at higher doses, but this has not been correlated with aPTT and is not

considered cause to adjust heparin dosing [11].

Materials and methods

Study population

Data for this study was extracted from the publicly available multi-parameter intelligent

monitoring in intensive care database (MIMIC-II) [12]. All data were extracted from the

database using the SQL programming language. We extracted a total of 4,779 unique adult

individuals from the MIMIC-II database by selecting all patients who received heparin

during their ICU stay. We included only those patients with aPTT measurements 4–8 h after

the initial infusion. This reduced the cohort size to 2,873. We further removed any subjects

with missing values for the covariates, reducing the cohort size to 2,125. Lastly, we removed

any patients that were transferred from another hospital, leaving the final cohort size at

1,511. Transfer patients were removed as the heparin might have been started prior to ICU

admission. Transfer patients were removed as we had no access to medical procedures that

were performed on the population at other institutions.

The amount of time patients spent in the therapeutic range was studied by extracting aPTT at

approximately 6 (4–8 h), 12 (9–20 h), and 24 (21–32) h after initiation of therapy. We

empirically identified the time ranges in which the intended 6, 12, and 24 h aPTT measures

actually occurred. For the 6 h window this was accomplished by selecting the time frame

where, across all patients, the greatest proportion of first aPTT measurements occurred.

Similarly, for the 12 h window, we selected the time frame where, across all patients, the

greatest proportions of measures were the second measure for the patient population. The 24

h window was identified in a similar way.

Study covariates and outcome

The outcome of interest was aPTT 4–8 h after the initial heparin infusion. We defined the

therapeutic range as an aPTT between 60–100 s (with values above this range considered
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supra-therapeutic, and values below considered sub-therapeutic). In this study we utilized

data from the Beth Isreal Deaconess Medical Center, and as such used their definition of

therapeutic aPTT when developing our predicative models. This is not to imply that the

guidelines provided by the BIDMC are more effective than those of other institutions but

rather, will serve to illustrate how our techniques may be used to estimate a dose which is

more likely to produce an outcome aligned with the institution’s specific definition of

therapeutic. (See the Appendix, Section 6).

Measurements of both renal and hepatic function were included as features of interest. A

binary variable was created for liver injury, which was coded as positive in patients with

either aspartate aminotransferase (AST) or alanine transaminase (ALT) greater than five

times the upper limit of normal. Other covariates included the weight-normalized heparin

dose, the time between heparin infusion and the first aPTT measurement (measure time),

patient age, gender, ethnicity (coded as white vs. nonwhite), the Elixhauser comorbidity

index (an indicator of chronic illness), [13, 14] ICU care unit type (medical vs. surgical) and

the Sequential Organ Failure Assessment score (SOFA) measure closest to the time of

heparin initiation. Due to limitations in the data source, we were unable to obtain

information on heparin boluses for the vast majority of our patients; the feature was not

included in our main analysis. Instead, we performed a subset analysis on the patients which

had heparin bolus information and discuss these results separately. Additionally, We were

unable to reliably determine the indication for heparin in a significant fraction of the study

cohort. For this reason, we left the indication for therapeutic UFH out of the primary model

and opted for ICU type as a proxy. We also performed a subset analysis, selecting the

heparin indication from ICD9 code when possible. Lastly We evaluated interaction terms

but none significantly improved the performance of the models—see Section 3 of the

Appendix for more details.

Guideline development

Multivariate logistic regression can be understood as providing a probability of some

outcome given a set of static feature values. The underlying linear assumption is ill-suited to

directly model phenomenon such as therapeutic aPTT, whose probability is a not a

monotonic function of the input features. However, sub-therapeutic and supra-therapeutic

aPTT can be thought of as monotonically dependent on the input features (the higher the

dose, the higher the probability of supra-therapeutic and vice versa). As patients can only

take on one of three possible therapeutic states, it follows that we can construct the

probability of therapeutic aPTT quite simply as:

(1)

where P(supra-therapeutic) is the multivariate logistic regression model for supra-

therapeutic aPTT, and P(sub-therapeutic) is the multivariate logistic regression model for

sub-therapeutic aPTT. To generate guidelines of the form in (Eq. 1), we performed two

independent multivariate logistic regressions, using the same features, with sub-therapeutic

aPTT and supra-therapeutic aPTT as the outcomes of interest. We then combined these

models to generate a model which describes the probability of all three therapeutic states of

a patient as a function of initial dose, and other features.
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Model analysis and validation

To validate the predictive performance of our sub- and supra-therapeutic models, we used

ten fold cross validation to predict outcomes on a withheld test set given a known training

set. We reported the mean AUC and standard deviation from this validation in addition to

the results of a Hosmer–Lemeshow test. To test our model’s capabilities as a classifier of

three distinct therapeutic states, we computed the volume under surface (VUS) measure

[15]. The VUS measure is similar to AUC, with the difference being that it may be used to

quantify the performance of a classifier with more than two outcomes. We compared the

VUS of our model to a weight-based model to gauge our method’s improvement in

classification performance. Lastly, we checked the statistical significance of the

improvement in our model’s predictive performance vs. the weight-based approach using a

likelihood-ratio test. All statistical analyses were performed using MATLAB Version

R2013a.

Alternative models

To validate our approach’s performance compared to standard forms of multinomial, and

ordinal logistic regression, we performed several validation experiments, which can also be

found in the Appendix, Sections 1 and 2. In addition to the logistic regression based

methods, we attempted several other forms of machine learning algorithms as a means of

validating our approach. Specifically, we compared our approach against a single and

double layer neural network, two ensemble learning based approaches, and a multiclass

support vector machine. In each case, the methods were allowed to train and validate on 70

% of the data, and tested on the remaining 30 %. We found that the more advanced methods

did not perform as well on the testing portion of the classification task as our proposed

approach—see Section 4 of the Appendix for full details.

Results

Main analysis

A total of 4,779 unique adult individuals from the MIMIC-II database who received IV UFH

during their ICU stay were identified. Patients who were transferred from another hospital or

missing a full set of feature data were excluded, leaving the final cohort size at 1,511.

Summary information on our patient population is shown in Table 1.

The trends in our cohort’s aPTT from heparin onset to approximately 24 h after infusion are

illustrated in Fig. 1 (Appendix). The proportion of patients with supra-therapeutic aPTT

decreased over time, from over a quarter of all patients at approximately 6 h after infusion to

roughly 5 % by approximately 24 h.

In Fig. 1 we show the distribution of initial heparin doses provided to our cohort as well as

their aPTT values classified by therapeutic range. The figure illustrates two important

points: (Eq. 1) a large number of patients received heparin dosing outside the amount

recommended in the guidelines from the institution, and (2) heparin misdosing is frequent

even when the dosing is at guideline levels. Table 2 provides the results of the multivariate

logistic regression model for the risk of a supra- and sub-therapeutic aPTT Combining our
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logistic regression models as shown in Eq. 1, the probability of sub-therapeutic, supra-

therapeutic, and therapeutic aPTT as a function of initial dose for two example patients was

plotted and shown in Fig. 2. In comparing these models we found a VUS of 0.48 for our

model vs. 0.42 for the weight-based approach. While the increase in performance is modest,

it is statistically significant according to the likelihood-ratio test (p < 0.01).

Bolus subset

Of our original cohort, only 485 patients had data available on their initial heparin bolus.

After removing transfer patients, we were left with 353 patients who met the inclusion

criteria for a subgroup analysis. For this subgroup, a weight-normalized bolus term was not

found to be statistically relevant (See Table A-10 of the Appendix). This suggests that our

analysis is sound despite the lack of information on heparin bolus. Comparison of the

patients who did and did not have data for heparin boluses is given in Table A-12 of the

Appendix.

Heparin indication subset

We did not have sufficient information captured in the database to determine the exact

indication for anticoagulation in this population of patients. For patients in which the

indication was easily inferred from ICD9 Codes, the distribution of therapeutic outcomes

(goal aPTT range set by BIDMC guidelines) vs. initial heparin dose is shown by indication

in Fig. 7 through 10 (Appendix). Information regarding the primary diagnosis for enrolled

patients is summarized in the Appendix, Tables A-13 and A-14. When models were

constructed using primary indication for heparin therapy as a covariate, the AUC increased

in each case by <0.02. This analysis is shown in the Appendix, in Table A-15.

Discussion

The results of Fig. 1 illustrate a surprisingly large variation in the initial dosing of UFH at

the BIDMC. Of note, even when the guidelines are being followed, the variance in aPTT

response remains large. This suggests that the wide variation in the initial aPTT results from

both inter-provider practice variability and patient factors. This variance might be the result

of clinicians dosing UFH according to known or presumed risk factors, despite the

guidelines at their institution. An Austrian survey in 2010 also showed relatively lax

adherence to dosing of enox-aparin for thromboprophylaxis in ICU practice [16].

As shown in Table 2, all of our chosen variables except the Elixhauser score, creatinine,

liver function, and measurement time exhibited statistically significant relationships (p <

0.05) with the first measured aPTT. These results are consistent with what has been

observed in the limited literature available. A 2008 study using data from 31,445 high risk

patients across 420 hospitals determined that increased age and female sex were associated

with elevated aPTT when using UFH, but that this effect was driven primarily by higher

initial dosing relative to weight [10].

Figure 2 shows how two patients evaluated using our model exhibit distinctive probabilities

of over-, under-, and therapeutic-dosing profiles. Figure 3 compares our model vs. a weight-

alone alternative. Our full-featured model recommends an initial UFH dose which will, for
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the same patient, provide a 5–10 % increase in the probability of a therapeutic aPTT at 6 h.

Given the frequency with which patients are treated with UFH drips, an improvement on this

order of magnitude would result in enhanced safety for a substantial number of patients.

Since the covariates of our analysis are commonly measured in an ICU setting, a clinician

could employ our method to predict the risk for a supra-or sub-therapeutic aPTT for any

given patient in real time, and dose a UFH drip accordingly following from Eq. 1.

Additionally, since the actual target aPTT range can be arbitrarily specified in the model to

follow institution specific guidelines, it can be used to adjust initial heparin dosing to any

desired therapeutic range. For instance, the goal aPTT for acute coronary syndromes at The

Beth Israel Deaconess Medical Center is 50–80 (see Section 6 of the Appendix); our model

is capable of targeting this or other ranges (driven by physician preference) with only very

minor adjustments.

While our model’s VUS exhibited modest (albeit significant) gains over a weight based

approach, we feel that our work is a good starting point for the development of more

effective heparin dosing guidelines and the approach would be strengthened as clinical

databases continue to grow in size. The models require validation on other ICU datasets.

This approach should also be evaluated in a randomized controlled trial.

The simplicity of this approach makes it relatively easy to embed in a website as an online

calculator. The model would require input of some fairly standard variables about a patient

(age, ethnicity, gender, ICU type, and SOFA score) to dynamically generate the probability

of reaching, overshooting, or undershooting a target range at 6 h. With such a tool, a

physician could choose an aPTT target range based on expected or tolerated risk of bleeding,

and see the risk of over- or undershooting in real time for any initial heparin drip rate.

Despite the encouraging results, our study has several limitations. Firstly, information

concerning the initial heparin bolus for our patients was incomplete; only 353 of the patients

in the cohort had bolus information available. In this sub-population, the amount of the

weight-adjusted bolus did not have a significant impact on aPTT at 6 h. One potential

explanation for this is that information about the heparin bolus is correlated with—and

therefore contained within—the infusion rate for the heparin drip. That is, a higher infusion

rate is associated with a higher heparin bolus, and vice versa. We do not consider the lack of

information about a heparin bolus a significant flaw in our study design, but it does preclude

us from making conclusions about the impact of heparin bolus on aPTT at 6 h.

In Table A-14 (Appendix) we observe that 21.3 % of patients had acute coronary syndromes

as their primary diagnosis, followed by 12.8 % with venous or arterial thrombosis (not in the

brain or heart), 5 % with primary valve disorders, 3.4 % with ischemic strokes. and 1.6 % of

patients with atrial fibrillation. More than half (55.7 %) had a primary diagnosis that does

not require anticoagulation. In the subgroups for which information regarding primary

indication was available, an indication of acute coronary syndrome or valvular disorder was

associated with a higher probability of sub-therapeutic dosing and a lower probability of

supra-therapeutic dosing. An indication of arterial or venous thrombosis was associated with

a higher probability of supra-therapeutic dosing, with no change to the probability of sub-
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therapeutic dosing. The absence of this information is a real limitation of our results, and

should be addressed as other groups build on our work using more complete databases.

One additional weakness of our study is that the incidence of bleeding was available for our

population. It is quite possible that the risk of bleeding for any given patient is more strongly

influenced by individual patient factors than by aPTT. However, given that the risk for

bleeding is known to increase with increasing aPTT and that a sub-therapeutic aPTT

indicates ineffective therapy, it is certainly more desirable to have an aPTT in the

therapeutic range from a safety standpoint. The same applies for thrombosis or thrombosis

recurrence.

Another limitation of this work is that the BIDMC heparin protocol was implemented in

approximately 2002 (with uneven rollout throughout the hospital); some of the data included

in the MIMIC-II database are from prior to the implementation of the guidelines. Due to the

nature of our dataset (dates have been shifted for de-identification), we cannot identify

which patients were treated based on the BIDMC weight-based protocol vs. physician-

determined dose, since physicians were allowed to modify the dose at will, based on their

assessment of the patient’s bleeding risk. However, the guideline used does not impact the

construction or applicability of the model. The model is built using weight-normalized

heparin dose, regardless of whether or not a guideline was followed. The aPTT range

targeted at BIDMC may be different from those at other institutions (in some cases

substantially so), but since the model predicts a probability distribution of aPTT category,

the upper and lower bounds of the therapeutic range can be arbitrarily specified.

Lastly, the data in this study were collected retrospectively and as such were limited to what

had been recorded on patients at the time. Further refinements could be made to the model

by collecting information on levels of heparin-binding proteins and other substances

affecting heparin activity, as well as the size of heparin boluses given with the heparin drips.

There remains the distinct possibility that aPTT is in fact immaterial to patient outcomes.

Should a superior method to monitor the effect of heparin emerge, the approach described in

the paper can be applied using that measurement as the outcome. In future prospective

studies, it would be useful to include information on anti-Xa levels and bleeding/thrombotic

outcomes in patients to allow comparison against aPTT and potentially help specify more

clinically relevant endpoints [17].

Having clearly outlined these limitations, we feel that our work is valid and demonstrates

that it is possible to improve on current weight-based heparin dosing practice using a data-

driven approach. As more of these variables (such as anti-Xa activity and protein levels)

move into clinical practice and the data become available, the ability to predict aPTT on the

basis of available data will likely improve as well.

Conclusion

A central aim of this study was to create an approach that would help clinicians determine

the optimal initial dose of a drug to safely and quickly reach a therapeutic aPTT window.

One serious disadvantage of heparin risk factor analyses based on clinical trials alone is that
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they exclude patients who exhibit a high propensity for bleeding or severe complications

caused by bleeding [2]. Retrospective analyses like ours are able to overcome this issue by

utilizing clinical data that is reflective of the entire population actually receiving treatment.

The model we developed allows clinicians to determine the initial dose which would

maximize the probability of a therapeutic aPTT by plotting P(thera-peutic) vs. a viable range

of dose values. This approach utilizes modeling techniques which are common in medical

research, and could be easily replicated for other medications. Indeed, the applicability of

the approach we described in this paper is not limited to heparin dosing, or to the ICU

setting. Given any large, comprehensive data set, it is possible to use a combination of

logistic regression curves to model the risks for over- or underdosing in which either or both

of these poses a significant risk. Potential applications include the use of any medication

with a measured range of therapeutic blood levels (antibiotics such as vancomycin or

aminoglycosides, an-tiepileptics such as valproic acid, post-transplant immunosuppressants

such as tacrolimus, etc.), or medications that are titrated to effect (such as antihypertensives

and insulin). Similar health informatics [18] techniques have already been used to improve

interpretation of pulmonary artery catheter data [19] and quality of glycemic control

algorithms [20]. As large datasets become more broadly available in multiple hospital

systems, it will be possible to create institution- or patient population-specific prediction

tools that can be used in real time to guide decisions regarding initial dosing. By reducing

the time required to reach therapeutic range, patients will have reduced exposure to

morbidity risk associated with over or under-dosing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Take-home message

We demonstrate a novel method that utilizes retrospective data to develop statistically

optimal dosing strategies for medications with sensitive therapeutic windows. We

illustrate our approach with the example of intravenous unfractionated heparin, a

medication which typically considers only patient weight and is frequently misdosed.
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Fig. 1.
The distribution of our cohort’s partial thromboplastin time (aPTT) measures approximately

6 h after initial dosing as a function of the initial, weight-based heparin dose
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Fig. 2.
Logistic probability models of sub-therapeutic, supra-therapeutic, and therapeutic dosing as

a function of initial dose for two distinct patients. The dashed lines represent the response of

a 40 year old, non-white, female, in the SICU with a SOFA score of 13. The solid lines

represent a 20 year old, white, male subject in the SICU with a SOFA score of 5
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Fig. 3.
A depiction of the logistic probability models of sub-therapeutic, supra-therapeutic, and

therapeutic dosing as a function of initial dose for a 20 year old, white, male subject in the

SICU with a SOFA score of 5 compared to the recommendations from a weight-alone based

model
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Table 1

Summary statistics of selected features for the study cohort partitioned according to the partial thromboplastin

time (aPTT) categories approximately 6 h after the initial infusion of heparin

Mean (standard deviation) aPTT<60 s
(n = 747)

60 s ≤ aPTT ≤ 100 s
(n = 382)

aPTT>100 s
(n = 382)

Age, years 67.3 (14.8) 68.6 (15.6) 70.5 (14.8)

SOFA score 5.3 (4.1) 5.2 (4.0) 6.4 (4.3)

Elixhauser 5.2 (5.1) 5.6 (5.1) 7.0 (5.7)

Heparin dose, UI/Kg × h 11 (4.6) 12.7 (3.7) 14.8 (3.9)

Measurement timeb, h 6.3 (1.0) 6.2 (1.1) 6.3 (1.0)

Creatinine, mg/dLa 1.5 (1.5) 1.6 (1.5) 1.7 (1.6)

Ethnicity, % white 69 % 66 % 69 %

Gender, % male 59 % 58 % 49 %

ICU type, % medical 65 % 72 % 79 %

Pulmonary embolism 6% 9% 14 %

Obesity 37 % 31 % 31 %

AST/ALT>5 × upper limit of normal 6% 6% 6%

a
SI conversion factor: to convert creatinine to µmol/L, multiply by 88.4

b
Measurement time is the time between heparin initiation and aPTT measurement
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Table 2

Results of a logistic regression for modeling supra-therapeutic and sub-therapeutic aPTT 6 h after the initial

dosing of heparin

Odds ratio 95 % Confidence interval
(lower/upper)

p value

Supra-therapeutic aPTT

  Age (years) 1.01 1.01/1.02 <0.01

  SOFA score 1.09 1.05/1.13 <0.01

  Elixhauser 1.01 0.99/1.03 0.42

  Heparin dose, UI/kg × h 1.27 1.23/1.32 <0.01

  Measurement timea, h 0.99 0.87/1.12 0.86

  Creatinine mg/dLb 0.98 0.89/1.07 0.64

  Ethnicity, white 0.56 0.40/0.79 <0.01

  Gender, male 0.60 0.46/0.78 <0.01

  ICU type, medical 1.60 1.17/2.17 <0.01

  AST/ALT>5× upper limit of normal 1.28 0.72/2.29 0.40

Sub-therapeutic aPTT

  Age 0.98 0.97/0.99 <0.01

  SOFA score 0.96 0.94/1.00 0.02

  Elixhauser 1.01 0.99/1.03 0.56

  Heparin dose, UI/kg × h 0.79 0.77/0.82 <0.01

  Measurement timea 1.04 0.93/1.16 0.49

  Creatinine mg/dLb 1.01 0.93/1.10 0.83

  Ethnicity, white 1.64 1.20/2.23 <0.01

  Gender, male 1.44 1.13/1.82 <0.01

  ICU type, medical 0.62 0.48/0.79 <0.01

  AST/ALT>5× upper limit of normal 0.77 0.46/1.29 0.33

Supra-therapeutic aPTT: validation AUC mean (standard deviation) = 0.79 (0.02), HL test p value = 0.118. Sub-therapeutic aPTT: validation AUC
mean (standard deviation) = 0.78 (0.03), HL test p value = 0.158

a
Measurement time is the time between heparin initiation and aPTT measurement

b
SI conversion factor: to convert creatinine to µmol/L, multiply by 88.4
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