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Abstract—Vital signs such as heart rate and heartbeat in-
terval are currently measured by electrocardiograms (ECG) or
wearable physiological monitors. These techniques either require
contact with the patient’s skin or are usually uncomfortable
to wear, rendering them too expensive and user-unfriendly
for daily monitoring. In this paper, we propose a new non-
invasive technology to generate an Acousticcardiogram (ACG) that
precisely monitors heartbeats using inaudible acoustic signals.
ACG uses only commodity microphones and speakers commonly
equipped on ubiquitous off-the-shelf devices, such as smartphones
and laptops. By transmitting an acoustic signal and analyzing its
reflections off human body, ACG is capable of recognizing the
heart rate as well as heartbeat rhythm. We employ frequency-
modulated sound signals to separate reflection of heart from
that of background motions and breath, and continuously track
the phase changes of the acoustic data. To translate these
acoustic data into heart and breath rates, we leverage the
dual microphone design on COTS mobile devices to suppress
direct echo from speaker to microphones, identify heart rate in
frequency domain, and adopt an advanced algorithm to extract
individual heartbeats. We implement ACG on commercial devices
and validate its performance in real environments. Experimental
results demonstrate ACG monitors user’s heartbeat accurately,
with median heart rate estimation error of 0.6 beat per minute
(bpm), and median heartbeat interval estimation error of 19 ms.

I. INTRODUCTION

Mobile health sensing is an emerging area that has attracted
significant interests from both the industry and the research
sides [1], [2], [3]. An attractive vision is imagined to moni-
tor main vital signs (e.g., pulse rate, respiration rate, blood
pressure, etc.) using daily mobile and smart devices. Vital
signs are routinely monitored by medical professionals using
dedicated equipment usually at a very limited frequency of
only once or twice a year. To live a healthy lifestyle, however,
it is critical to manage personal health data with a much
finer granularity and in particular keep tabs on vital signs
more regularly and frequently, or even daily for best. Mobile
health sensing, thanks to the rapid development of Internet of
Things and mobile sensing, provides a pervasive, user-friendly,
sustainable and affordable chance to achieve the above goals.
If we can monitor vital signs with everyday smartphones, we
are able to track measurements of these otherwise elusive signs
anywhere and anytime and keep health records day-by-day.

Significant efforts have been devoted to promote mobile
vital sign monitoring, such as pulse rate [4], blood pressure
[5], temperature [6], respiratory rate [7], etc. Different from
these indicators, monitoring of cardiac rhythm, an even critical
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Fig. 1. Illustration of ACG.

vital sign among others, however, is non-trivial and far from
being reality on smart devices. Daily cardiac monitoring
is especially important to diagnose heart rhythm disorders
because such disorders are usually sporadic and might not
present themselves during one single or several doctor’s visits.
Although heart rhythm disorders are not life threatening most
of the time, they seriously risk the sufferers life when they are
accompanied by dizziness, fainting, palpitations, and otherwise
unexplained strokes, etc. Conceptually, heart rhythm disorders
are irregularities in the rhythm of the heart that can cause the
heart to flutter, skip a beat, or skip between the two for a short
time. Thus to detect them, one needs to monitor continuous
heartbeats precisely.

Besides medical inspections, heartbeats are typically mea-
sured by wearable or implantable cardiac monitors that record
the electrical signals of the heart and produce the well-
known electrocardiograms (ECG). Despite of the precise and
reliable reports, the use of wearable or implantable devices
is cumbersome and usually expensive, making them suitable
for confirmed patients but less-than-ideal for regular usage.
Existing approaches for mobile heartbeat monitoring resort
to radio frequency (RF) signals [8] or smartphone cameras
[9]. While RF-based approach like EQ-Radio [8] provides an
attractive contactless manner, it is vulnerable to surrounding
environments and is available only in limited areas with prior
deployed RF devices. Image-based methods like Cardiio [2]
and HemaApp [10] employ smartphone cameras to sense the
patterns of blood changes and to further infer heartbeats.
However, they require the user to put a finger tightly on the
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camera for a sufficient period.

In this paper, we present a non-invasive technology for
heartbeat monitoring. Our method uses only the commodity
off-the-shelf smartphones and does not require the user to
carry any on/in-body devices. Our design uses inaudible
acoustic signals to sense heartbeat motion and generates an
Acousticcardiogram (ACG) of heart rhythms, as illustrated
in Figure 1. The key insight is to turn the phone into an
active sonar that transmits high frequency inaudible signals
and captures the signals reflected off the human chest. These
reflections are encoded by chest motions caused by breath as
well as heartbeat and can be decoded for vital sign monitoring.

Technically, ACG addresses three critical challenges. First,
the speakers and microphones on commodity smart devices are
mainly designed for general purpose, and thus lack hardware
solution to cancel strong power leakage from the speaker
directly to the microphone, which would heavily overwhelm
the reflection signals of interests. To overcome this, ACG lever-
ages two microphones available on common smart devices to
achieve pseudo self-interference cancellation. Since the direct
power leakage from the speaker to the two microphones are
much stronger than reflections from the human chest, it is able
to align, scale the power leakages and cancel it by calculating
the difference of the signals of two microphones.

Second, the human chest motion is minute and the heartbeat
motion is even weaker. Previous work [7] employs frequency
modulated continuous wave (FMCW) to separate reflections
from human chest from other environmental reflections, and
track the frequency shifts caused by the chest motion. How-
ever, it still cannot spot heartbeat signal from the overall
reflections, as both the amplitude and the frequency shift
caused by the heartbeat is usually beyond the spatial resolution
of the FMCW sonar. Instead, we track signal phase within
target spatial range, which contains the motion of target chest,
to obtain heart rhythms measurement. To obtain the signal
phase, we introduce FMCW front-end that down-converts the
received passband signal to baseband complex signal.

Third, chest motions are induced by not only heartbeat
but also human breathing. However, the heartbeat signal is
orders of magnitude weaker than the breath signal, and thus
submerged in breath signal as well as other irrelevant noises.
By observing that heart signal is quasi-periodic and that the
heart rate is usually higher than breath rate, we find the heart
rate can be accurately estimated in frequency domain with
enough data. To achieve this, we propose a novel comb notch
filter that is adaptive to real-time estimation of the heart rate,
which separates the fundamental frequency and harmonics of
the heart signal from out-of-band noises and breath signal.
Then we further apply an EM algorithm [8] in RF sensing
field to obtain accurate measurement of heartbeats.

To evaluate the performance of ACG, we implement it as
a third-party APP on commercial smartphones and recruit
a group of 10 participants for testing. Experimental results
demonstrate elegant performance of ACG, which monitors
users heartbeat accurately, with a median heart rate error
of 0.6 bpm, and a median heartbeat period error of 19 ms.
As comparison, ACG achieves comparable accuracy with the
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Fig. 2. Work flow of ACG.

vision-based contact approach (by framing finger), which
has a median heart rate error of 0.4 bpm and a median
heartbeat period error of 21 ms, and outperforms the non-
contact approach (by framing face), which has a median heart
rate error of 1 bpm and a median heartbeat period error of 30
ms.

In summary, our core contributions are as follows.

• We design a general FMCW sonar front-end that fits for
commercial audio systems on smart devices, and enable
fine-grained baseband signal processing. A novel algo-
rithm is proposed to leverage dual microphones available
to cancel self-interference of the sonar.

• We model the relations between the FMCW baseband
signal phase information and the chest movements due
to breath and heartbeat, and propose a novel contactless
technique that monitors vital signs including heart rate
and heartbeat interval by tracking fine-grained baseband
signal phase information. As far as we are aware of, it is
the first acoustic-based work that obtains accurate vital
signs contactlessly on smart devices.

• We implement ACG on commodity smart devices and
validate its effectiveness with various parameters and
scenarios settings. Experimental results demonstrate that
ACG achieves comparable accuracy with popular vision-
based contact approach and significantly outperforms the
vision-based contactless approach on smart devices.

In the rest of the paper, we first provide the overview of
ACG in Section II, followed by the design and implementation
of FMCW sonar in Section III and vital signs monitor in
Section IV. Then, performance evaluation and parameter study
of ACG are provided in Section V. Finally, related works are
reviewed in Section VI and conclusion is drawn in Section VII.

II. ACG OVERVIEW

ACG is a passive vital signs monitoring system using off-
the-shelf audio system on smart devices (e.g. phones, laptops).
Figure 2 illustrates the logic process of ACG. ACG mainly con-
sists of two parts, FMCW sonar and vital signs monitor. First,

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1575
Authorized licensed use limited to: Michigan State University. Downloaded on July 13,2021 at 14:43:01 UTC from IEEE Xplore.  Restrictions apply. 



0 T
s

2T
s

Time

F
l

F
h

F
re

qu
en

cy

Transmitted
Received

FFT FFT

f

t

Fig. 3. FMCW sonar processing. Fig. 4. FMCW Signal design. (a) Spectrogram of
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Fig. 5. Illustration of dual microphone cancella-
tion.

ACG simulates an FMCW sonar [3] that transmits inaudible
chirp signals through the speaker and capture reflections with
the microphones. The reflected signal is down-converted to
complex baseband signal. Then, ACG detects the signal phase
that contains user’s chest motion, removes the breath signal
and extracts heartbeat signal. The heart rates and heartbeat
intervals are estimated.

The main technical challenge for ACG is the extremely
low signal-to-interference ratio (SIR) and signal-to-noise ratio
(SNR) for heartbeat identification. Specifically, these inter-
ferences and noises obfuscate the harmonic components of
the periodic heartbeat signal, which is necessary for iden-
tifying individual heartbeats. On one hand, to mitigate ran-
dom environmental and internal hardware noises, ACG tracks
down-converted baseband signal phase, which is more robust
against noises than the frequency shift [7]. On the other hand,
the interferences stem from various sources including power
leakage directly from speaker to microphone, large chest
motion and other unconscious body motions. To cancel power
leakage, ACG leverages dual microphone design on modern
smart devices to achieve pseudo self-interference cancellation.
To reduce impacts of irrelevant motions, ACG adopts filters
adaptive to vital signs parameters to amplify heartbeat signal.

III. FMCW SONAR

ACG implements an FMCW sonar to capture signals re-
flected by moving chest and vibrating body. This section
provides the technical preliminaries, fundamental model and
practical issues of the sonar design.

A. FMCW Sonar Principle

An FMCW sonar transmits a chirp signal, whose instan-
taneous frequency increases linearly during the predefined
sweeping period Ts, as shown in Figure 3. The transmitted
signals reflect off the reflectors in the environment and arrive
back at the sonar after some time delay. Since the transmitted
frequency increases linearly, the sonar can determine the
time delay by comparing the received and transmitted signal
frequency. For example, in Figure 3, the time delay Δt can

be calculated as Δt =
Δf

k , where Δf is the frequency shift

between the transmitted and received signal and k = Fh−Fl

Ts

is the slope of linear frequency sweeping. The range of the
target reflector is thus d = vΔt

2 , where v is the speed of the
signal.

When multiple reflectors locate at different distances from
the receiver, their reflections have different frequency shifts,
which can be distinguished by performing Fourier transform
over a sweeping period of the signal, as in Figure 3. Essen-
tially, FMCW sonar acts as a spatial filter that separates spa-
tially different reflections, which is the fundamental principle
for monitoring vital signs in multipath-rich daily environment.

B. FMCW Signal Design
In time domain, the chirp signal transmitted by FMCW

sonar is:

s(t) = Acos(2π(fct+
B(t−NTs)

2

2Ts
)) (1)

where t ∈ (NTs − Ts

2 , NTs +
Ts

2 ], N ∈ Z . The parameters
of a chirp signal include: A, the amplitude of the signal;
fc = Fh+Fl

2 , the carrier frequency; B = Fh − Fl, the
bandwidth; and Ts, the sweep time; To make the chirp signal
inaudible, the upper and lower frequency Fh, Fl have to
be larger than 16kHz [11]. A common parameter setting is
Fh = 19kHz, Fl = 17kHz, and Ts = 10.7ms, corresponding
to 512 samples under the typical 48kHz sampling rate of
phone speakers. However, as Figure 4a shows the spectrogram
of the chirp signal, strong power leakage can be spotted
due to frequency hopping from Fh to Fl between successive
sweeps, making the chirp signal audible. Thus, a tapered
cosine window [12] is applied to the chirp signal, in order
to eliminate the audible noises caused by spectral leakage
with most signal samples unaltered. The windowing factor r
determines the length of cosine parts of the window. The final
FMCW signal is shown in Figure 4b.

C. Dual Microphone Cancellation
As speakers and microphones on commercial smart devices

are separated for general use, the direct power leakage from
speaker to microphone cannot be removed by audio hardware,
which causes severe self-interference and may lead to mistaken
identification of target reflection. Figure 5 shows an example
of raw sound segment (blue) captured by single microphone.
With the existence of strong direct path between the speaker
and microphone, it is hard to spot the weak breath signal.

Existing art [13] in RF sensing field uses two transmit
antennas to cancel direct power leakage at the receive an-
tenna. However, this approach does not work for ACG. The
reasons are two folds. First, smart phone commonly has two
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pairs of co-located speakers and microphones. Playing sounds
with any speaker may saturate the corresponding microphone
with power leakage, making it infeasible to sense reflections.
Second, the speakers on smart phone are designed for different
uses (e.g. communication, playing sound) and thus highly het-
erogeneous. It is hard to perform equalization on commercial
audio system for FMCW chirp signals.

Instead, we leverage two microphones available on smart
phones to achieve interference cancellation. Specifically, sup-
pose one speaker plays FMCW signal and two microphones
receive r1(t) and r2(t) respectively, ACG estimates sub-
sample delay δt with the phase slope changing in frequency
domain, and further calculates correlation c between two
aligned signals [14]:

δt = minδ‖∠(F [r1(t)]F∗[r2(t)]) + 2πfδ‖
rshift2 (t) = F−1[F [r2(t)] · e−j2πfδt ]

c =
r1(t) · rshift2 (t)

‖r1(t)‖‖rshift2 (t)‖

(2)

where F [·] denotes Fourier transform. Since direct power
leakages from the speaker to the microphones are the strongest
components, we can approximate the estimation above as the
delay and amplitude ratio of the power leakages of the two
microphones. Thus, ACG scales rshift2 (t) with c, and subtracts
it from r1(t):

r(t)cancel = r1(t)− crshift2 (t). (3)

Note that the parameters only need to be calculated once at the
beginning of the monitoring, and each time after the device
is moved. ACG carries out cancellation discretely chunk by
chunk (e.g. 2s periods), and splices the outputs to form the
cancellation signal. Figure 5 shows the output of cancellation
(red), where breath waveform can be clearly identified.

D. Baseband Signal Processing
The act of breath and heartbeat cause vital motions such as

minute chest motion and body vibration that modulate FMCW
reflections. However, such minute motion is dramatically
smaller than the ranging resolution of FMCW sonar:

δd =
v

2B
(4)

where v is the sound wave speed, and B is the bandwidth of
chirp signal. Specifically, with a typical bandwidth of 2kHz,

the ranging resolution of FMCW sonar is
343m/s

2×2000Hz = 8.6cm.

In contrast, breath and heartbeat motions have sub-centimetre
level amplitudes.

Due to limited bandwidth of inaudible sound available
on commercial audio system, it is impossible to directly
range breath and heartbeat motion with frequency shift. To
address this problem, ACG down-converts the FMCW signal
to baseband, and continuously tracks the signal phase of the
spatial bin that contains vital motions. Figure 6 shows the front
end used by ACG.

The rationale is that while vital motions are hidden within
the spatial bin, they change the range of reflection and thus
modulate the signal phase of the bin. Specifically, with the
propagation delay τt (< Ts

2 ) and attenuation α < 1, the
reflection of vital motion r(t) is:

r(t) = αcos(2π(fc(t− τ(t)) +
B(t− τ(t)−N ′Ts)

2

2Ts
)) (5)

where N ′ = N − 1 when t ∈ P1 = (NTs − Ts

2 , NTs − Ts

2 +
τ(t)], and N ′ = N when t ∈ P2 = (NTs − Ts

2 + τ(t), NTs +
Ts

2 ]. Based on the system structure shown in Figure 6, the
baseband signal b(t) is derived as:

rb(t) =

⎧⎨
⎩

αej2π(fcτ(t)+
B(t−NTs)(τ(t)−Ts)

Ts
−B(τ(t)−Ts)2

2Ts ) t ∈ P1

αej2π(fcτ(t)+
B(t−NTs)τ(t)

Ts
−Bτ(t)2

2Ts
) t ∈ P2

(6)
ACG calculates the spectrogram of rb(t) and selects the signal

b(t) in spatial bin with frequency shift f = τ(t)B
Ts

:

b(t) = 2α
Ts − τ(t)

Ts
ej2π(fcτ(t)−

Bτ(t)2

2Ts
)

+ 2α
sin(2πBτ(t))

2πB

τ(t)

Ts
ej2π(fcτ(t)−

B(τ(t)2−T2
s )

2Ts
)

(7)

On one hand, the second term in Equation 7 is due to
frequency hopping at the end of each sweep, where the
frequency difference ambiguously changes from Δf to B−Δf
(see Figure 3). As the strongest direct signal is eliminated
by dual microphone cancellation, the main signal remained
is the reflection of user’s chest. Thus, ACG further aligns
the received signal with the reference signal using cross
correlation (recall Equation 2), and thus removes the second
term. On the other hand, both amplitude and phase of the first
term encode the vital motions. As signal amplitude is more
vulnerable to random noises, ACG tracks vital motions with
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signal phase φ(t) = 2π(fcτ(t) − Bτ(t)2

2Ts
). In typical settings,

fc >> Bτ(t)
2Ts

, ACG omits the quadratic term as:

φ(t) ≈ 2πfcτ(t) (8)

For implementation, ACG calculates the spectrogram of
baseband signal, as shown in Figure 7. Specifically, multiple
sweeps (e.g. 10) of the chirp signal are grouped for Fourier
transform to mitigate high frequency random noises. The
spatial bin with highest time variation and its adjacent bins are
selected. Time variations of bins are estimated by calculating
the average difference of bin values that are spaced at some
constant time (e.g. 0.4s). Then ACG performs PCA analysis
on the selected bins and tracks the phase of the first PCA
components, which mainly contains the target reflections.
Figure 8 shows the signal phase of the first PCA component,
where breath-induced chest motion and heartbeat-induced
body vibration can be spotted. To eliminate the impact of
displacement and unconscious body motion, ACG smooths the
signal, and subtracts the smoothed output from the signal. The
span of the smooth filter is set to 5s.

IV. VITAL SIGNS MONITOR

This section details the process of extracting vital signs
including breath rate, heart rate and individual heartbeat from
acoustic signal phase.

A. Breath Identification
As breath signal is periodic and can be clearly spotted

in signal phase (Figure 8), ACG extracts the breath rate by
performing Fourier transform on the signal phase, and the
spectrum is shown in Figure 9. To estimate breath rate, ACG
searches the most prominent peak in a predefined frequency
range for normal breath (e.g. 0 ∼ 60 BPM). The frequency of
the peak yields a coarse estimation of breath rate.

However, the accuracy of coarse estimation is limited by
the resolution of Fourier transform, which is determined
by the time length of the signal. To obtain more accurate
measurements, ACG performs inverse Fourier transform on
the dominant peak and its adjacent two bins to obtain a
complex time-domain signal φ′(t). As φ′(t) only contains
single dominant breath frequency, its phase is quasi-linear and
its slope corresponds to the breath rate. Thus, a finer estimation
can be obtained as:

BR = 60 · slope(∠φ
′(t))

2π
(9)
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B. Heart Rate Measurement

As heartbeat signal is also periodic, the same process can
be applied to estimate heart rate. However, since breath signal
is orders of magnitudes stronger than heartbeat signal, the
search range of heart rate should be carefully defined to avoid
obfuscations by breath signal. The major concern is that the
breath signal is not perfect sine wave, and may contain strong
harmonic components. By trading off the impact of breath
signal and detection range of heartbeat, ACG sets the lower
bound of the search range as max(2 · BR, 50) BPM.

Similar to breath, two-step estimation is carried out to obtain
accurate heart rate. Figure 9 shows the peak corresponding to
the heart rate.

C. Heartbeat Extraction

Extracting individual heartbeat incurs more challenges than
estimating breath and heart rates. First, the heartbeat signal
is obfuscated by the orders of magnitude stronger breath
signal. Second, the heartbeat waveform lack sharp peaks as in
ECG signal, making it harder to accurately identify heartbeat
intervals. Existing art [8] in RF sensing field achieves accurate
heartbeat extraction by two-step process. First, a second order
noise robust differentiator [15] is applied to the signal phase
to mitigate low frequency breath signal, and amplify high
frequency heartbeat signal. Second, it treats the heartbeat
signal as successive multiple copies of the heartbeat wave-
form with different scale, and uses expectation maximisation
(EM) algorithm to jointly estimate heartbeat intervals and the
template of heartbeat waveform.
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However, the RF-based heartbeat extraction algorithm can-
not be directly applied to the acoustic signal due to its
dramatically low SNR. Specifically, the strong noises may
obfuscate the harmonic components of the heartbeat signal,
and drive the EM algorithm to oscillate or converge at wrong
local minima. Figure 10 shows the normalized spectrum of the
output of the differentiator (blue). The differentiator mitigates
the breath signal at 0.17 Hz, and amplifies the heartbeat signal
at 1.19 Hz. However, the differentiator also amplifies the high
frequency noises, which submerges the harmonic components
of heartbeat signal.

Since heartbeat signal is quasi-periodic, its power should
concentrate on the fundamental frequency and harmonic com-
ponents. Thus, ACG adopts IIR comb notch filter that is
adaptive to heart rate to extract heartbeat signal from noise
background. As shown in Figure 11, the order of the filter is
set as SamplingRate

HeartRate . Denote the filter as h(t), then the heart
signal, φh(t), is calculated as:

φh(t) = φ(t)− h(t)⊗ φ(t) (10)

where ⊗ is the convolution operation. ACG then filters the
heart signal φh(t) with the second order noise robust differen-
tiator, and applies the EM algorithm [8] to extract individual
heartbeats. Figure 12 shows examples of heartbeat extraction
results from both ACG and ECG. Heartbeats are accurately
estimated with low SNR acoustic signal.

V. EVALUATION

This section presents the experimental settings and the
detailed performance of ACG.

A. Experimental Methodology

Implementation. We implement ACG as a third-party APP
on recent Android platform, e.g. Google Nexus 6P with
Android 6.0 OS. ACG plays FMCW signal samples on the
communication speaker and continuously records the raw sam-
ples from the two microphones. The communication speaker
and its co-located microphone are at the top of the phone,
and the other microphone is at the bottom of the phone.
When the microphone plays at full volume, the SNR of the
acoustic signal at 5cm away is about 30dB. We implement
baseband signal processing, breath identification and heart
rate measurement as C functions using Android NDK to

achieve better efficiency. The heart signal is exported to the PC
for heartbeat extraction, which is implemented in MATLAB.
Meanwhile, since the iOS platform only authorizes single
channel recording to third-party developers, so we do not
implement ACG on the iOS platform.

Evaluation Setup. The experiments are conducted in stan-
dard office environments, where exist various sounds caused
by server running, human talking and tapping keyboards, etc.
As illustrated in Figure 13, we place the phone vertically on a
height-adjustable plate, facing towards the user. A commercial
3-lead ECG monitor, Heal Force PC-80B, is used to obtain
the ground truth. The sampling rate of the ECG monitor is
150 Hz, which converts to the time resolution of 6.7 ms.
Experiments are carried out in groups, each group lasts 1
minute. During the experiment, testers wear single coats, such
as shirts and dresses, sit in front of the phone and breathe
normally. Both audio signal and ECG signal are recorded
for further performance evaluation. Various factors including
FMCW signal parameters, user and device placement diversity,
and key processes of ACG are considered in the experiment.

B. Overall Performance
Performance of vital signs measurement. We first report

overall performance of ACG in measurement of heart rate
and heartbeat interval. For better clarification, we compare
ACG with two state-of-the-art vision-based heart monitor
approaches on smart devices, which track light absorbing of
the finger (contact) and the face (non-contact). A commercial
heart monitor APP, Cardiio [2], is used to obtain measurements
of these two approaches. For brevity, we denote the two
approaches as FINGER and FACE.

Figure 14a plots the CDF of heart rate measurement errors
of three approaches over all experiments. As illustrated, ACG
achieves a median error of 0.6 bpm, which is slightly worse
than FINGER, yet superior to FACE. The explanation of
evaluation results are two folds. First, both ACG and FACE
are non-contact approaches, which severely suffer from user’s
unconscious body motions. In contrast, FINGER requires
contact of user’s finger with flash light and phone camera,
and thus obtain stable measurements. Second, in addition to
user’s motion, FACE is further limited by ambient lighting
conditions. For example, the approach even fails in extreme
weak or strong lighting conditions.

The CDF of heartbeat interval error in Figure 14b demon-
strates similar evaluation results. Specifically, ACG achieves
a median error of 18.7 ms, which is better than FINGER
(median error of 21.7 ms) and FACE (30.0 ms). The high
average accuracy of ACG is attributed to the high sampling
rate of the acoustic signal on smart devices. Specifically, by
setting the sampling rate of microphone to 48 kHz and the
number of samples per sweep of FMCW signal to 512, ACG
obtains 48000

512 = 93.75 Hz heart signal. In contrast, the vision
method is limited by the frame rate of the camera, which is
no more than 60 fps on common smart devices. However, the
error tail of ACG is larger than FINGER and comparable to
FACE, which is due to unconscious body motions of the user.

Relation between heart rate and heartbeat interval.
Figure 15 shows the relation between heart rate error and
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Fig. 14. Overall performance of ACG.
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Fig. 15. Relation between heart rate and heartbeat
interval.

heartbeat interval error. Clearly, the heartbeat error increases
with the heart rate error. The experimental result is consistent
with the system design. Specifically, as ACG uses comb filter
whose order is determined by the estimation of heart rate, a
deviation of the estimation may distort the spectrum of heart
signal and retain some irrelevant out-of-band noises. Since
both errors are positively correlated, we only demonstrate the
heartbeat error of the rest experiments, due to space limitation.

C. Use Issue Study
This section studies the impact of various issues for prac-

tical use of ACG, including the user-device distances, user
orientations, body parts and user diversity.

User-device distance. We evaluate the performance of
ACG as users sit at various distances away from the phone.
Figure 16 shows the impact of the distance. ACG achieves
the highest accuracy when the user is 5 cm in front of the
phone, and slightly lower accuracy with larger distance less
than 30 cm. As the user moves away from the phone, the area
illuminated by the acoustic signal becomes larger, which to
some extent compensates the power loss due to longer travel
distance. Since ACG targets near-field vital signs monitoring
with portable smart devices, a monitor range of 30 cm is
sufficient for practical use.

User orientation. To evaluate the impact of user orientation,
we ask users to sit and face towards various directions,
including left, front-left, front, front-right, and right. As shown
in Figure 17, ACG achieves highest accuracy when the user
faces towards the phone (front), and the accuracy degrades as
the angle between the orientations of the user and the device.
As the user orientation deviates from the phone orientation,
the reflection surface changes from the front chest to side
chest, causing the decrease of reflection area and weaker body
vibration captured by reflections. It is also noted that the
performance of right directions are better than that of left
directions. It is because that the human heart is at the left
side of the chest, causing stronger vibration on the left side
than the right side.

Body part. Since acoustic signals played by phone speaker
is much weak, only partial body part can be illuminated
during monitoring. So we study the performance of ACG when
monitoring different body parts, including heart, chest, head
and abdomen. Specifically, for heart, we place the phone to
directly face the heart of the user. As shown in Figure 18,

ACG achieves highest accuracy for chest, since it is close to
the vibration source, i.e. heart. The performance for heart is
slightly worse, which is due to the smaller area of the heart
in comparison with chest. The performance for head is worse
than the first two cases. We find that in this case, ACG cannot
accurately track the user’s breath and suffer from irrelevant
and significant head motions. The performance for abdomen
is the worst and unacceptable. The body vibration caused by
heartbeat is the weakest at abdomen, and is easily obfuscated
by harmonics of abdomen motions caused by breath. As a
result, it is recommended to use ACG to monitor heart or
chest for the best performance.

User diversity. To evaluate the robustness of ACG for
various users, we recruit 10 participants (5 males, 5 females)
to test ACG. The testers have various ages (20∼40) and
body conditions. Figure 19 shows the performance of ACG
with different participants. The accuracy of ACG for males
are statistically lower than that for females, in that females
have weaker chest motions. Except for the users 7 and 9,
ACG achieves median measurement errors of about 20 ms for
the rest testers. We carefully check both acoustic and ECG
signals recorded for the users 7 and 9. The user 7 has much
abnormal movements during the test, which obfuscates weak
body vibration caused by heartbeat. The user 9 has significant
cardiac arrhythmia. Her heart signal has a wider frequency
band and thus suffers more from random noises. The further
study of these special cases is left as future work.

D. Key Processes Study
This section provides study on the performance of key pro-

cesses used in ACG, including dual microphone cancellation,
baseband signal phase processing and application of comb
filter.

Dual microphone cancellation. ACG leverages dual micro-
phone cancellation to eliminate power leakage directly from
the speaker to the microphone and amplify reflections from
user’s chest. To evaluate the impact of the the dual microphone
cancellation, we compare the performance of ACG using dual
microphones and using single microphone. Specifically, in the
latter scheme, ACG uses the microphone that is not co-located
with the speaker to avoid overwhelmed power leakage from
the speaker. As shown in Figure 20, with dual microphone
cancellation, the median error of ACG decreases from 27.9
ms to 18.7 ms, and the error tail is shortened from 400 ms

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1580
Authorized licensed use limited to: Michigan State University. Downloaded on July 13,2021 at 14:43:01 UTC from IEEE Xplore.  Restrictions apply. 



5 10 15 20 25 30
Distance (cm)

0

50

100

150
B

ea
t I

nt
er

va
l E

rr
or

 (
m

s)

Fig. 16. Impact of user-device dis-
tance.
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Fig. 17. Impact of user orientation.
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Fig. 18. Impact of illuminating body
part.
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Fig. 22. Impact of adaptive filter.

to 200 ms, demonstrating the effectiveness of the cancellation
process.

Baseband signal phase processing. While Equation 7
shows that both amplitude and phase of the baseband signal
encode vital motions, the signal amplitude is more vulnerable
to random noises and ACG uses signal phase to track the vital
signs. To evaluate the impact of usage of signal phase, we
compare the performance of ACG with both signal amplitude
and phase. As shown in Figure 21, by tracking baseband signal
phase, the median error of ACG decreases from 40.7 ms to
18.7 ms, and the error tail is shortened from 400 ms to 200
ms.

Adaptive filter. ACG uses comb notch filter to extract quasi-
periodic heart signal from out-of-band noises. The -3 dB
bandwidth of the filter notch determines the extent that the
noise is filtered. Specifically, the smaller the bandwidth is, the
more the noise is removed. To evaluate the impact of adaptive
comb filter, we compare the performance of ACG that uses
comb filters with different notch bandwidth, as well as does
not use the filter. As shown in Figure 22, the median error of
ACG without the adaptive filter is 32.0 ms. In contrast, with
comb filter, the median error decreases as the notch bandwidth
of the filter decreases, and finally converges to 18.7 ms. In
practice, ACG sets the filter notch bandwidth to 0.4 Hz, in
order to avoid opportunistically significant heart rate variation.

VI. RELATED WORK

We categorize the related work into two parts, those related
to vital sign monitoring, and those related to acoustic activity
sensing.

Vital signs monitoring. Vital signs such as heart rate
and heartbeat intervals are important indicators for human
health condition, mental status and stress level. Traditional
medical approaches use dedicated equipments such as Spirom-
eter [16], electrocardiography (ECG) and echocardiography

(ECHO) [17]. While promising, these devices incur high
cost, require cumbersome installation and are vulnerable to
electromagnetic interference. To enable daily monitoring of
these information, various techniques have been developed.
Prosperous wearable devices such as smart phones [18],
watches [1] and bands [19] turn on-board cameras or photo-
detectors into pulse oximeters. By attaching some body part
(e.g. finger, wrist) and sensing the light absorbing variations
of the blood, they can track pulsating nature of the arterial
blood flow as well as the heart [20]. Other works leverage
attached inertial sensors to detect tiny heartbeat motions [21],
[22], [23], [24], [25]. These techniques require contact with the
body or infrastructure (e.g. bed), making them uncomfortable
and inconvenient to use.

Recent advance in computer vision and wireless sensing en-
ables non-contact monitoring. Vision-based techniques either
measure light absorbing of distant body part (e.g. face) as
oximeters [9], [2], or track the tiny body vibration caused by
heartbeat [4], [26]. However, they require strict illumination
conditions, and have privacy concerns. In contrast, RF-based
techniques track the impact of body motion caused by respira-
tory and heartbeats on RF signal. As COTS RF devices [27],
[28], [29], [30] transmit single or multiple carrier continuous
wave signal, they cannot separate the reflection containing
breath and heartbeat motion, and thus can only roughly es-
timate respiratory and heart rate. While accurate measurement
of vital signs can be obtained via specialized Radar system [3],
[8], ACG leverages commercial audio system on nowadays
smart phones to achieve accurate non-contact monitoring of
vital signs.

Acoustic activity sensing. Passive acoustic sensing recog-
nizes various activities directly from sound recording [31],
[32], [33]. Sleep Hunter [34] tracks sleeping stage transitions
from body movement and acoustic signal. Fine-grained sleep
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monitoring is further achieved by capturing breath sound with
earphones [35]. In contrast, active acoustic sensing uses active
sonar that transmits inaudible signals for finer tracking [36],
activity sensing [37] and vital signs monitoring [7]. LLAP [11]
uses signal phase of single carrier continuous wave to track
centimetre-level finger motions. Due to multipath effect, it
requires target finger to move with distance of multiple wave-
length to remove irrelevant reflections, which cannot be ful-
filled in heartbeat monitoring. ApneaApp [7] leverages FMCW
sonar to capture minute breath and identify sleep apnea event.
In contrast, by carefully processing FMCW baseband signal
phase information, ACG pushes the sensing limit to millimetre-
level heartbeat.

VII. CONCLUSION

In this paper, we propose an acoustic-based contactless
vital signs monitoring system ACG, that measures user’s heart
rhythms. First, we design a general FMCW sonar that fits
for commercial speakers and microphones on smart devices,
enabling fine-grained baseband signal processing. Then, we
model the relations between the FMCW baseband signal
phase information and the chest movements due to breath
and heartbeat, amplify the heartbeat signal with adaptive
filter and achieve accurate heart rhythms measurement. We
implement ACG on commodity smart devices and evaluate
it in real environments. Experimental results show that ACG
achieves high accuracy superior to state-of-the-art vision-based
contactless approach, with a median error of 0.6 bpm for
heart rate and a median error of 19 ms for heartbeat interval.
Further work focuses on robustly monitoring vital signs during
user motion, extending monitoring range and further pushing
accuracy towards contact approaches.

ACKNOWLEDGEMENT

This work is supported in part by the NSFC under grant
61522110, 61332004, 61572366, 61632008, 61672319, Na-
tional Key Research Plan under grant No. 2016YFC0700100.

REFERENCES

[1] “Apple watch,” https://www.apple.com/watch/.
[2] “Cardiio,” https://www.cardiio.com/.
[3] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart homes

that monitor breathing and heart rate,” in Proceedings of ACM CHI,
2015.

[4] G. Balakrishnan, F. Durand, and J. Guttag, “Detecting pulse from head
motions in video,” in Proceedings of IEEE CVPR, 2013.

[5] I. C. Jeong and J. Finkelstein, “Introducing contactless blood pressure
assessment using a high speed video camera,” Journal of medical
systems, vol. 40, no. 4, pp. 1–10, 2016.

[6] “Shecare,” http://www.ikangtai.com/.
[7] R. Nandakumar, S. Gollakota, and N. Watson, “Contactless sleep apnea

detection on smartphones,” in Proceedings of ACM MobiSys, 2015.
[8] M. Zhao, F. Adib, and D. Katabi, “Emotion recognition using wireless

signals,” in Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking, 2016.

[9] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. Freeman,
“Eulerian video magnification for revealing subtle changes in the world,”
2012.

[10] E. J. Wang, W. Li, D. Hawkins, T. Gernsheimer, C. Norby-Slycord,
and S. N. Patel, “Hemaapp: noninvasive blood screening of hemoglobin
using smartphone cameras,” in Proceedings of ACM Ubicomp, 2016.

[11] W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking using
acoustic signals,” in Proceedings of ACM MobiCom, 2016.

[12] P. Bloomfield, Fourier analysis of time series: an introduction. John
Wiley & Sons, 2004.

[13] F. Adib and D. Katabi, See through walls with WiFi!, 2013.
[14] “Delay estimation by fft,” https://www.dsprelated.com/showarticle/26.php.
[15] “Noise robust differentiators for second derivativeestimation,”

http://www.holoborodko.com/pavel/downloads/NoiseRobustSecondDerivative.
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