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14.1 INTRODUCTION
Reinforcement learning (RL) [1–3], inspired by learning mechanisms observed in animals, is con-

cerned with how an agent or decision maker takes actions so as to optimize a cost of its long-term

interactions with the environment. The cost function is prescribed and captures some desired system

behaviors such as minimizing the transient error and minimizing the control effort for achieving a spe-

cific goal. The agent learns an optimal policy so that, by taking actions produced based on this policy,

the long-term cost function is optimized. Similar to RL, optimal control involves finding an optimal

policy by optimizing a long-term performance criterion. Strong connections between RL and optimal

control have prompted a major effort towards introducing and developing online and model-free RL

algorithms to learn the solution to optimal control problems [4–6].

RL methods have been successfully used to solve the optimal regulation problems by learning the

solution to the so-called Hamilton–Jacobi equations arising from both optimal H2 [7–18] and H∞

[19–30] regulation problems. For continuous-time (CT) systems, [8,9] proposed a promising RL algo-

rithm, called integral RL (IRL), to learn the solution to the Hamilton–Jacobi–Bellman (HJB) equations

using only partial knowledge about the system dynamics. They used an iterative online policy iter-

ation [31] procedure to implement their IRL algorithm. The original IRL algorithm and many of its

extensions are on-policy algorithms. That is, the policy that is applied to the system to generate data

for learning (behavior policy) is the same as the policy that is being updated and learned about (target

policy). The work [15] presented an off-policy RL algorithms for CT systems in which the behavior

policy could be different from the target policy. This algorithm does not require any knowledge of the

system dynamics and is data efficient because it reuses the data generated by the behavior policy to

learn as many target policies as required. Many variants and extensions of off-policy RL algorithms

are presented in the literature. Other than the IRL-based PI algorithms and off-policy RL algorithms,

efficient synchronous PI algorithms with guaranteed closed-loop stability were proposed for CT sys-

tems in [7,11,12] to learn the solution to the HJB equation. Synchronous IRL algorithms were also

presented for solving the HJB equation in [23,32].

Although RL algorithms have been widely used to solve the optimal regulation problems, few

results considered solving the optimal tracking control problem (OTCP) for both discrete-time [33–36]

and continuous-time systems [6,37]. Moreover, existing methods for continuous-time systems require

the exact knowledge of the system dynamics a priori while finding the feedforward part of the control

input using either the dynamic inversion concept or the solution of output regulator equations [39–41].

While the importance of the RL algorithms is well understood for solving optimal regulation problems

for uncertain systems, the requirement of the exact knowledge of the system dynamics for finding

the steady-state part of the control input in the existing OTCP formulation does not allow for direct

extending of the IRL algorithm for solving the OTCP.

In this chapter, we develop adaptive optimal controllers based on the RL techniques to learn the

optimal H∞ tracking control solutions for nonlinear continuous-time systems without knowing the

system dynamics or the command generator dynamics. An augmented system is first constructed from

the tracking error dynamics and the command generator dynamics to introduce a new discounted per-

formance function for the OTCP. The tracking Hamilton–Jacobi–Isaac (HJI) equations are then derived

to solve OTCPs. Off-policy RL algorithms, implemented on an actor-critic structure, are used to find

the solution to the tracking HJI equations online using only measured data along the augmented system

trajectories. These algorithms are developed for both affine and nonaffine nonlinear systems. Therefore,
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they can be employed in control of many real-world applications, including robot manipulators, mobile

robots, unmanned aerial vehicles (UAVs), power systems and human–robot interaction systems.

14.2 H∞ OPTIMAL TRACKING CONTROL FOR NONLINEAR AFFINE
SYSTEMS

Existing solutions to the H∞ tracking problem are composed of two steps [38–41]. A feedforward

control input is designed to guarantee perfect tracking using either dynamic inversion or by solving the

so-called output regulator equations in the first step. A feedback control input is designed in the second

step by solving an HJI equation to stabilize the tracking error dynamics. In these methods, procedures

for computing the feedback and feedforward terms are based on offline solution methods which require

complete knowledge of the system dynamics. In this section, a new formulation for the H∞ tracking is

presented which allows developing model-free RL solutions.

Consider the nonlinear time-invariant system given as

ẋ(t) = f(x(t)) + g(x(t))u(t) + k(x(t))w(t), (14.1)

where x(t) ∈ R
n, u(t) ∈ R

m and w(t) ∈ R
p represent the state of the system, the control input and

the external disturbance of the system, respectively. The drift dynamics is represented by f(x(t)) ∈ R
n,

g(x(t)) ∈R
n×m is the input dynamics and k(x(t)) ∈R

p is the disturbance dynamics. It is assumed that

f(0) = 0 and f(x(t)), g(x(t) and k(x(t)) are unknown Lipschitz functions and the system is stabilizable.

Assumption 1. Let r(t) be the bounded reference trajectory and assume that there exists a Lipschitz

continuous command generator function hd(t) ∈ R
n with hd(0) = 0 such that

ṙ(t) = hd(t) r(t). (14.2)

Define the tracking error

ed(t) , x(t) − r(t). (14.3)

Using (14.1)–(14.3), the tracking error dynamics is given by

ėd(t) = f(x(t)) + g(x(t))u(t) + k(x(t))w(t) − hd(r(t)). (14.4)

The performance output to be controlled is defined such that it satisfies

‖z(t)‖2 = ed
T Q ed + uT R u. (14.5)

The goal of the H∞ tracking is to attenuate the effect of the disturbance input w on the performance

output z. Before defining the H∞ tracking control problem, we define the following general L2-gain

or disturbance attenuation condition.

Definition 1 (Bounded L2-gain or disturbance attenuation). The nonlinear system (14.1) is said to

have L2-gain less than or equal to γ if the following disturbance attenuation condition is satisfied for
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all w ∈ L2[0, ∞):

∫ ∞
t

e−α(τ−t) ‖z(τ )‖2 dτ
∫ ∞
t

e−α(τ−t) ‖w(τ )‖2dτ
6 γ 2, (14.6)

where α > 0 is the discount factor and γ represents the amount of attenuation from the disturbance

input w(t) to the defined performance output variable z(t).

The disturbance attenuation condition (14.6) implies that the effect of the disturbance input to the

desired performance output is attenuated by a degree at least equal to γ . The desired performance

output represents a meaningful cost in the sense that it includes a positive penalty on the tracking error

and a positive penalty on the control effort. The use of the discount factor is essential. This is because

the feedforward part of the control input does not converge to zero in general and thus penalizing the

control input in the performance function without a discount factor makes the performance function

unbounded.

Using (14.5) in (14.6) one has

∫ ∞

t

e−α(τ−t)(ed
T Qed + uT Ru)dτ 6 γ 2

∫ ∞

t

e−α(τ−t)(wT w) dτ. (14.7)

Definition 2 (H∞ optimal tracking). The H∞ tracking control problem is to find a control policy u =

β(ed, r) for some smooth function β depending on the tracking error e and the reference trajectory r,

such that:

(i) The closed-loop system ẋ = f(x)+ g(x)β(ed, r) + k(x)w satisfies the attenuation condition (14.7).

(ii) The tracking error dynamics (14.4) with w = 0 is locally asymptotically stable.

The main difference between Definition 2 and the standard definition of the H∞ tracking control

problem (see [38], Definition 5.2.1) is that a more general disturbance attenuation condition is defined

here. Previous work on the H∞ optimal tracking divides the control input into feedback and feed-

forward parts. The feedforward part is first obtained separately without considering any optimality

criterion. Then, the problem of optimal design of the feedback part is reduced to an H∞ optimal regu-

lation problem. In contrast, in the new formulation, both feedback and feedforward parts of the control

input are obtained simultaneously and optimally as a result of the defined L2-gain with discount factor

in (14.7).

14.2.1 HJI EQUATION FOR H∞ OPTIMAL TRACKING

In this section, it is first shown that the problem of solving theH∞ tracking problem can be transformed

into a min–max optimization problem subject to an augmented system composed of the tracking error

dynamics and the command generator dynamics. A tracking HJI equation is then developed which

gives the solution to the min–max optimization problem. The stability and L2-gain boundedness of the

tracking HJI control solution are discussed.

Define the augmented system state

X(t) = [ed(t)T r(t)T ]T ∈ R
2n,

where ed(t) is the tracking error defined in (14.3) and r(t) is the reference trajectory.
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Using (14.2) and (14.4), define the augmented system

Ẋ(t) = F(X(t)) + G(X(t))u(t) + K(X(t))w(t), (14.8)

where u(t) = u(X(t)) and

F(X) =

[

f(ed + r) − hd(r)

hd(r)

]

,G(X) =

[

g(ed + r)

0

]

,K(X) =

[

k(ed + r)

0

]

.

The disturbance attenuation condition (14.7) using the augmented state becomes

∫ ∞

t

e−α(τ−t)(XT QTX + uT Ru)dτ 6 γ 2
∫ ∞

t

e−α(τ−t)(wT w) dτ, (14.9)

where

QT =

[

Q 0

0 0

]

.

Based on (14.9), define the performance function

J (u,w) =

∫ ∞

t

e−α(τ−t)(XT QT X + uT R u − γ 2wT w) dτ. (14.10)

Solvability of theH∞ control problem is equivalent to solvability of the following zero-sum game [42]:

V ⋆(X(t)) = J (u⋆,w⋆) =min
u
max

d
J (u,w), (14.11)

where J is defined in (14.10) and V ⋆(X(t)) is defined as the optimal value function. This two-player

zero-sum game control problem has a unique solution if a game theoretic saddle point exists, i.e., if the

following Nash condition holds:

V ⋆(X(t)) =min
u
max

d
J (u,w) =max

d
min

u
J (u,w).

Differentiating (14.10), note that V (X(t)) = J (u(t),w(t)) gives the following Bellman equation:

H(V,u,w)
1
=XT QTX + uT R u − γ 2wT w − αV + VX

T (F + G u + K w) = 0, (14.12)

where F , F(X), G , G(X) , K , K(X) and VX = ∂V
/

∂X.

Applying stationarity conditions ∂H(V ⋆,u,w)
/

∂u = 0, ∂H(V ⋆,u,w)
/

∂w = 0 [43] gives the op-

timal control and disturbance inputs as

u⋆ = −
1

2
R−1GT VX

⋆, (14.13)

w⋆ =
1

2γ 2
KT VX

⋆, (14.14)
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where V ⋆ is the optimal value function defined in (14.11). Substituting the control input (14.13) and

the disturbance (14.14) into (14.12), the following tracking HJI equation is obtained:

H(V ⋆,u⋆,w⋆), XT QTX + VX
⋆T F − αVX

−
1

4
VX

⋆T GT R−1GVX
⋆ +

1

4γ 2
VX

⋆T K KTVX
⋆ = 0.

(14.15)

It is shown in [44] that the control solution (14.13)–(14.15) satisfies the disturbance attenuation

condition (14.9) (part (i) of Definition 2) and that it guarantees the stability of the tracking error dy-

namics (14.4) without the disturbance (part (ii) of Definition 2), if the discount factor is less than an

upper bound.

14.2.2 OFF-POLICY IRL FOR LEARNING THE TRACKING HJI EQUATION

In this section, an off-policy RL algorithm is first given to learn this control solution online and without

requiring any knowledge of the system dynamics.

The Bellman equation (14.12) is linear in the cost function V , while the HJI equation (14.15)

is nonlinear in the value function V ⋆. Therefore, solving the Bellman equation for V is easier than

solving the HJI for V ⋆. Instead of directly solving for V ⋆, a policy iteration (PI) algorithm iterates on

both control and disturbance players to break the HJI equation into a sequence of differential equations

linear in the cost. An offline PI algorithm for solving the H∞ optimal tracking problem is given as

follows.

Algorithm 1 Offline RL algorithm.

1: procedure

2: Start with an admissible stabilizing control policy u0.

3: For a control input uj and disturbance policy wj , find V j using the following Bellman equation:

H(V j , uj ,wj ) = XT QT X + (VX
j )T (F + G uj + K wj ) − αV j + (uj )

T
R uj − γ 2(wj )T wj = 0.

(14.16)

4: Update the disturbance using

wj+1 = arg max
d

[

H(V j ,uj ,w)
]

=
1

2γ 2
KT VX

j (14.17)

and the control policy using

uj+1 = arg min
u

[

H(V j ,u,wj+1)
]

= −
1

2
R−1GT VX

j . (14.18)

5: Go to 3.

6: end procedure

Algorithm 1 extends the results of the simultaneous RL algorithm in [27] to the tracking problem.

The convergence of this algorithm to the minimal nonnegative solution of the HJI equation was shown

in [27]. In fact, similar to [27], the convergence of Algorithm 1 can be established by proving that
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iteration on (14.16) is essentially a Newton iterative sequence which converges to the unique solution

of the HJI equation (14.15).

Algorithm 1 requires complete knowledge of the system dynamics. In the following, the off-policy

IRL algorithm, which was presented in [14,15] for solving the H2 optimal regulation problem, is ex-

tended here to solve the H∞ optimal tracking for systems with completely unknown dynamics. To this

end, the system dynamics (14.8) is first written as

Ẋ = F + G uj + K wj + G (u − uj ) + K (w − wj ), (14.19)

where uj ∈ R
m and wj ∈ R

q are policies to be updated. In this equation, the control input u is the

behavior policy which is applied to the system to generate data for learning, while uj is the target

policy which is evaluated and updated using data generated by the behavior policy. The fixed control

policy u should be a stable and exploring control policy. Moreover, the disturbance input w is the

actual external disturbance that comes from an external source and is not under our control. However,

the disturbance wj is the disturbance that is evaluated and updated. One advantage of this off-policy

IRL Bellman equation is that, in contrast to on-policy RL-based methods, the disturbance input that is

applied to the system does not require to be adjustable.

Differentiating V j (X) along with the system dynamics (14.19) and using (14.16)–(14.18) gives

V̇ j = (VX
j )T (F + G uj + K wj ) + (VX

j )T G(u − uj ) + (VX
j )T K (w − wj )

= α V j − XT QT X − (uj )T R uj + γ 2(wj )T wj−

2 (uj+1)T R (u − uj ) + 2γ 2(wj+1)T (w − wj ).

(14.20)

Multiplying both sides of (14.20) by e−α(τ−t) and integrating from both sides yields the following

off-policy IRL Bellman equation:

e−αT V j (X(t + T )) − V j (X(t)) =
∫ t+T

t

e−α(τ−t)(−XT QT X − (uj )T R uj + γ 2(wj )T wj ) dτ

+

∫ t+T

t

e−α(τ−t)(−2 (uj+1)T R (u − uj ) + 2γ 2(wj+1)T (w − wj )) dτ.

(14.21)

Note that, for a fixed control policy u (the policy that is applied to the system) and a given disturbance

w (the actual disturbance that is applied to the system), Eq. (14.21) can be solved for both the value

function V j and the updated policies uj+1 and wj+1 simultaneously.

Lemma 1. The off-policy IRL equation (14.21) gives the same solution for the value function as

the Bellman equation (14.16) and the same updated control and disturbance policies as (14.18) and

(14.17).

Proof. See [44].

The following algorithm uses the off-policy tracking Bellman equation (14.21) to iteratively solve

the HJI equation (14.15) without requiring any knowledge of the system dynamics. The implementation
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of this algorithm is discussed in the next subsection. It is shown how the data collected from a fixed

control policy u are reused to evaluate many updated control policies ui sequentially until convergence

to the optimal solution is achieved.

Algorithm 2 Online off-policy RL algorithm for solving the tracking HJI equation.

1: procedure

2: Phase 1 (data collection using a fixed control policy): Apply a fixed control policy u to the system and

collect required system information about the state, control input and disturbance at N different sampling

intervals T .

3: For a control input uj and disturbance policy wj , find V j using the following Bellman equation:

H(V j ,uj ,wj ) = XT QT X + (VX
j )T (F + G uj + K wj ) − αV j + (uj )T R uj − γ 2(wj )T wj = 0.

(14.22)

4: Phase 2 (reuse of collected data sequentially to find an optimal policy iteratively): Given uj and

wj , use collected information in phase 1 to Solve the following Bellman equation for V j , uj+1 and wj+1

simultaneously:

e−αT V j (X(t + T )) − V j (X(t)) =
∫ t+T

t
e−α(τ−t)(−XT QT X − (uj )T R uj + γ 2(wj )T wj ) dτ

+

∫ t+T

t
e−α(τ−t)(−2(uj+1)T R(u − uj ) + 2γ 2(wj+1)T (w − wj )) dτ.

(14.23)

5: Stop if a stopping criterion is met, otherwise set j = j + 1 and go to 3.

6: end procedure

Inspired by the off-policy algorithm in [14], Algorithm 2 has two separate phases. First, a fixed

initial exploratory control policy u is applied and the system information is recorded over the time

interval T. Second, without requiring any knowledge of the system dynamics, the information collected

in phase 1 is repeatedly used to find a sequence of updated policies uj and wj converging to u⋆ and w⋆.

Note that Eq. (14.23) is a scalar equation and can be solved in a least square sense after collecting

enough data samples from the system. It is shown in the following section how to collect required

information in phase 1 and reuse it in phase 2 in a least square sense to solve (14.23) for V j , uj+1 and

wj+1 simultaneously. After the learning is done and the optimal control policy u⋆ is found, it can be

applied to the system.

Theorem 1 (Convergence of Algorithm 2). The off-policy Algorithm 2 converges to the optimal control

and disturbance solutions given by (14.13) and (14.14) where the value function satisfies the tracking

HJI equation (14.15).

Proof. See [44].

14.2.3 IMPLEMENTING ALGORITHM 2 USING NEURAL NETWORKS

In order to implement the off-policy RL Algorithm 2, it is required to reuse the collected information

found by applying a fixed control policy u to the system to solve Eq. (14.23) for V j , uj+1 and wj+1
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iteratively. Three neural networks (NNs), i.e., the actor NN, the critic NN and the disturber NN, are

used here to approximate the value function and the updated control and disturbance policies in the

Bellman equation (14.23). That is, the solution V j , uj+1 and wj+1 of the Bellman equation (14.23) is

approximated by three NNs as

V̂ j (X) = ŴT
1 σ(X), (14.24)

ûj+1(X) = ŴT
2 φ(X), (14.25)

ŵj+1(X) = ŴT
3 ϕ(X), (14.26)

where σ = [σ1, ..., σl1] ∈ R
l1 , φ = [φ1, ..., φl2 ] ∈ R

l2 and ϕ = [ϕ1, ..., ϕl3 ] ∈ R
l3 provide suitable basis

function vectors, Ŵ1 ∈ R
l1 , Ŵ2 ∈ R

m×l2 and Ŵ3 ∈ R
q×l3 are constant weight vectors and l1, l2 and

l3 are the number of neurons. Define v1 = [v11, ..., v
m
1 ]T = u − uj , v2 = [v21, ..., v

2
q ]T = w − wj and

assume R = diag(r, ..., rm). Then, substituting (14.24)–(14.26) in (14.23) yields

e(t) = ŴT
1 (e−αT σ(X(t + T )) − σ(X(t)))

−

∫ t+T

t

e−α(τ−t)(−XT QTX − (uj )T Ruj + γ 2(wj )T wj )dτ

+ 2

m
∑

l=1

rl

∫ t+T

t

e−α(τ−t) ŴT
2,lφ(X(t))v1l dτ

− 2γ 2
q

∑

k=1

∫ t+T

t

e−α(τ−t) ŴT
3,kϕ(X(t))v2k dτ,

(14.27)

where e(t) is the Bellman approximation error, Ŵ2,l is the lth column of Ŵ2 and Ŵ3,k is the kth

column of Ŵ3. The Bellman approximation error is the continuous-time counterpart of the temporal

difference (TD) [10]. In order to bring the TD error to its minimum value, the least squares method is

used. To this end, rewrite Eq. (14.27) as

y(t) + e(t) = ŴTh(t), (14.28)

where

Ŵ = [ŴT
1 ,ŴT

2,l, ...,ŴT
2,m,ŴT

3,1, ...,ŴT
3,q]T ∈R

l1+m×l2+q×l3 ,

h(t) =

































e−αT σ(X(t + T )) − σ(X(t)))

2r1
∫ t+T

t
e−α(τ−t) φ(X(t)) v11 dτ

...

2rm
∫ t+T

t
e−α(τ−t) φ(X(t)) v1m dτ

−2γ 2
∫ t+T

t
e−α(τ−t) ϕ(X(t)) v21 dτ

...

−2γ 2
∫ t+T

t
e−α(τ−t) ϕ(X(t)) v2q dτ

































, (14.29)
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y(t) =

∫ t+T

t

e−α(τ−t)(−XT QTX − (uj )T Ruj + γ 2(wj )T wj )dτ . (14.30)

The parameter vector Ŵ, which gives the approximated value function, actor and disturbance

(14.24)–(14.26), is found by minimizing, in the least squares sense, the Bellman error. Assume that

the systems state, input and disturbance information are collected at N > l1 + m × l2 + q × l3 (the

number of independent elements in Ŵ) points t1 to tN in the state space, over the same time interval T

in phase 1. Then, for a given uj and wj , one can use this information to evaluate (14.29) and (14.30)

at N points to form

H = [h(t1), ....,h(tN )],

Y = [y(t1), ...., y(tN )]T .

The least squares solution to (14.28) is then equal to

Ŵ = (HHT )−1HY,

which gives V j , uj+1 and wj+1. Note that although X(t + T ) appears in Eq. (14.27), this equation is

solved in a least square sense after observing N samplesX(t), X(t +T ), . . . , X(t +NT ). Therefore, the

knowledge of the system is not required to predict the future state X(t + T ) at time t to solve (14.27).

14.3 H∞ OPTIMAL TRACKING CONTROL FOR A CLASS OF NONLINEAR
NONAFFINE SYSTEMS

This section considers the design of an RL-based optimal tracking control solution for a class of non-

affine systems.

14.3.1 A CLASS OF NONAFFINE DYNAMICAL SYSTEMS

A special class of nonaffine systems can be described as

Ẋ(t) = f(X(t)) + g(X(t))L(u) + D w(t), (14.31)

where X(t) ∈ R
n, u(t) ∈ R

m and w(t) ∈ R
p are the state of the system, the control input and the

external disturbance input, respectively. The functions f(X(t)) and g(X(t)) are Lipschitz functions.

This system is affine in a nonlinear function L(.) of the control input u(t). This class of nonaffine

systems allows the definition of a new performance function for the optimal H∞ problem such that the

existence of the constrained optimal control is assured (if any exists).

The following example shows that the UAV as a real-world application can be presented in the form

of (14.31).

Example 1. A general class of nonlinear nonaffine UAV systems has the following well-known form:

ẋ1 = V cosγ cosψ + d1w1,
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ẋ2 = V cosγ sinψ + d2w2,

ẋ3 = −V sinγ + d3w3,

V̇ = −α2V
2 − g sinγ + α1T̄ − α3nz − α4

n2z

V 2
,

γ̇ =
g

V
(nz cosφ − cosγ ),

ψ̇ =
g

V cosγ
nz sinφ, (14.32)

with

nx =
T̄ T̄max cosα − D

mg
,

nx =
T̄ T̄max sinα + K

mg
,

where x1, x2, x3 are the UAV location coordinates, γ is the pitch angle, ψ is the heading angle, φ

is bank angle, V is the UAV velocity and m is the mass of the UAV. The terms nx and nz denote

longitudinal and normal components of the load factor, depending on the current thrust T̄ , drag force

D and lift force K (g is the acceleration due to gravity) [45].

Define the state of the UAV as

X = {x1, x2, x3,V , γ,ψ}T (14.33)

and the control input and disturbance inputs (wind velocity) as u(t) = [T̄ , nz, φ]T = [ u1 u2 u3 ]T

and w(t), respectively. The constraints on the control input are as follows:

|u1|6 ū1,

|u2|6 ū2. (14.34)

Using (14.32) and (14.33), the UAV dynamics can be written as a nonlinear nonaffine CT system as

Ẋ(t) = M(X(t),u(t)) + D w(t), (14.35)

with

D =
[

d1 d2 d3 0 0 0
]T

,

M(X,u) =























x4 cos(x5) cos(x6)

x4 cos(x5) sin(x6)

−x4 sin(x5)

−α2 x24 − g sin(x5) + α1u1 − α3u2 − α4
u22
x24

g
x4

(− cos(x5) + u2 cos(u3))
g

x4 cos(x5)
u2 sin(u3)























.
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The UAV dynamics (14.35) can be written in the form of (14.31) with

f(X(t)) =



















x4 cos(x5) cos(x6)

x4 cos(x5) sin(x6)

−x4 sin(x5)

−α2 x24 − g sin(x5)
g
x4

(− cos(x5)

0



















, g(X(t)) =



















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

α1 −α3 −α4
x24

0 0

0 0 0 1 0

0 0 0 0
g

x4 cos(x5)



















,

L(u(t)) =













L1
L2
L3
L4
L5













=













u1
u2

u22
u2 cos(u3)

u2 sin(u3)













.

Eq. (14.31) represents a large class of nonaffine systems far larger than the systems that are affine in the

control itself. In fact, most aircraft dynamics can be expressed in the form of (14.31) if the lift equation

satisfies certain assumptions [45].

14.3.2 PERFORMANCE FUNCTION AND H∞ CONTROL TRACKING FOR NONAFFINE
SYSTEMS

It is shown in [46] that the existence of an admissible optimal control solution for nonaffine systems

depends on how the utility function r(X,u) is defined. Moreover, to deal with the input constraints,

a nonquadratic performance index needs to be defined as follows.

Let the reference trajectory be generated by the command generator dynamics (14.2). The perfor-

mance or control output z(t) is defined such that it satisfies

‖z(t)‖2 = (X − r)TQ (X − r) + W(L(u)), (14.36)

where Q º 0 and W(L(u)) is a positive definite nonquadratic function of L(u) which penalizes the

control effort and is chosen as follows to assure the constrained control effort:

W(L(u)) =

∫ L(u)

0

w(s) ds =

l
∑

j=1

(

∫ Lj (u)

0

wj (sj ) dsj ),

where w(s) = tanh−1(L̄−1s) =
[

w1(s1) · · · wl(sl)
]T
and L̄ is the constant diagonal matrix given

by L̄ = diag(L̄1, ..., L̄l), which determines the bounds on L(u). Note that the bounds are originally

given for the control input u(t) itself. However, one can transform these bounds to bounds on L(u).

The H∞ control is to develop a control input such that (1) the system (1) with w = 0 is asymptoti-

cally stable and (2) the L2 gain condition (14.6) with z(t) defined in (14.36) is satisfied in the presence

of w ∈ L2[0,∞).
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The disturbance attenuation condition is satisfied if the following cost function is nonpositive:

J (X) =

∫ ∞

t

e−α(τ−t)
[

(X − r)TQ(X − r) +W(L(u)) − γ 2wTw
]

dτ. (14.37)

14.3.3 SOLUTION OF THE H∞ CONTROL TRACKING PROBLEM OF NONAFFINE
SYSTEMS

Define the tracking error as (14.3). Then, using (14.2) and (14.31), the tracking error dynamics becomes

ėd(t) = Ẋ(t) − ṙ(t) = f(X(t)) + g(X(t))L(u) + D w(t) − hd(r)(t). (14.38)

Based on (14.2) and (14.38), an augmented system can be constructed in terms of the tracking error

e(t) and the reference trajectory r(t) as

Ż(t) =

[

ė(t)

ṙ(t)

]

=

[

f(e(t) + r(t)) − hd(r(t))

hd(r(t))

]

+

[

g(e(t) + r(t))

0

]

L(u) +

[

D

0

]

w(t)

≡ F(Z(t)) + G(Z(t))L(u) + Kw(t), (14.39)

where the augmented state is

Z(t) =

[

e(t)

r(t)

]

.

The performance index (14.37) can be rewritten as

J (L(u),w) =

∞
∫

t

e−α (τ−t)
(

ZT (τ )Q1 Z(τ ) + W(L(u)) − γ 2wTw
)

dτ, (14.40)

with Q1 =

[

Q 0

0 0

]

.

The H∞ control problem can be expressed as a two-player zero-sum differential game in which the

control effort policy player L(u) seeks to minimize the value function, while the disturbance policy

player w(t) desires to maximize it. The goal is to find the feedback saddle point (L⋆(u),w⋆) such that

[42]

V ⋆(Z(t)) =min
L(u)

max
w

J (L(u),w). (14.41)

On the basis of (14.40) and noting that V (Z(t)) = J (L(u),w), the H∞ tracking Bellman equation is

ZTQ1Z + W(L(u)) − γ 2wTw − αV (Z) + V̇ (Z) = 0 (14.42)

and the Hamiltonian is given by

H(Z,L(u),w,VZ) = ZTQ1Z + W(L(u)) − γ 2wTw − αV (Z) + V TZ (F(Z) + G(Z)L(u) + Kw).
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Then the optimal control effort L(u) and disturbance input w(t) for the given problem are obtained by

employing the stationarity condition

L⋆(u) = argmin
L(u)

H(Z,L(u),w,V ∗) ,
d

[

ZTQ1Z + W(L(u)) − γ 2wTw − αV ⋆ + (V ⋆
Z)TŻ

]

d L(u)
,

w⋆ = argmax
w

H(Z,L(u),w,V ⋆) ,
d

[

ZTQ1Z + W(L(u)) − γ 2wTw − αV ⋆ + (V ⋆
Z)TŻ

]

d w
,

which give

L⋆(u) = −L̄tanhT(v⋆), (14.43)

w⋆ =
1

2
γ −2(V ∗

Z )TK, (14.44)

where

v⋆ = (V ⋆
Z)TG. (14.45)

Substituting (14.43) and (14.44) in Bellman equation (14.42) yields the HJI equation

ZTQ1Z + W(L⋆(u)) − γ 2(w⋆)Tw⋆ − αV ⋆(Z) + V̇ ⋆(Z) = 0. (14.46)

To find the optimal control solution, the tracking HJI equation (14.46) could first be solved and then

the control effort L⋆(u) given by (14.43).

Note that the minimization problem (14.41) is defined in terms of L(u). Under certain conditions,

this is equivalent to minimization in terms of u(t).

Lemma 2. We have min
u

H(Z,L(u),w,VZ) = min
L(u)

H(Z,L(u),w,VZ) if the elements of L(u) are

independent.

Proof. The minimum of H(Z,L(u),w,VZ) with respect to u is equal to

min
u

H(Z,L(u),w,VZ) = (
∂L(u)

∂ u
)T

∂H(Z,L(u),w,VZ)

∂L(u)
= 0 (14.47)

and the minimum of H(Z,L(u),w,VZ) with respect to L(u) is equal to

min
L(u)

H(Z,L(u),w,VZ) =
d H(Z,L(u),w,VZ)

d L(u)
= 0. (14.48)

Eqs. (14.47) and (14.48) are equivalent if and only if J = dL(u)
/

d u is a nonsingular matrix which

guarantees the elements of L(u) are independent [46].

Note that if the elements of L⋆(u) are independent, then the optimal control is given by

u⋆ = −L−1(L̄tanhT (v⋆)), (14.49)
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thus L(u⋆) = L⋆(u). Otherwise, it is shown in the subsequent sections how to use (14.43) to find v⋆ and

u⋆ consequently to assure L(u⋆) = L⋆(u). The next result holds for both independent and dependent

L(u).

Theorem 2 (Solution to bounded L2 gain problem). Assume that there exists a continuous-time pos-

itive semidefinite solution V ⋆(Z) to the tracking HJI equation (14.46). Let L⋆(u) be given by (14.43).

Then L⋆(u) in (14.31) makes the L2 gain from the disturbance to the performance output less than or

equal to γ .

Proof. See [46].

If the elements of L(u) are independent, then there exists a u⋆ such that L(u⋆) = L⋆(u) and this u⋆

makes the L2 gain less than or equal to γ . On the other hand, if the elements of L⋆(u) are dependent,

a method of solution is suggested in subsequent sections.

14.3.4 OFF-POLICY REINFORCEMENT LEARNING FOR NONAFFINE SYSTEMS

In this section, the off-policy RL is presented to solve the optimal H∞ control of nonaffine nonlinear

systems. In the proposed method, no knowledge about the system dynamics and the reference trajectory

dynamics is needed. Moreover, it does not require an adjustable disturbance input and it avoids bias

in finding the value function. Two algorithms are developed for two different cases: (1) for nonaffine

systems with independent elements in L(u) and (2) for nonaffine systems with dependent elements in

L(u). Then the implementation of these two algorithms is given.

The system dynamics (14.39) can be rewritten as

Ż(t) = F(Z(t)) + G(Z(t))Lj (u) + Kwj + G(Z(t))(L(u) − Lj (u)) + K(w − wj ), (14.50)

where Lj (u) and wj (t) are the policies that are updated. By contrast, L(u) and w(t) are the policies

that are applied to the system to collect the data.

By the definition, it is easy to see that

e−α(tk−tk−1)V j+1(Z(tk)) − V j+1(Z(tk−1)) =

∫ tk

tk−1

e−α(τ−tk−1)(V
j+1
Z )

T
Ż(t) − αV j+1 dt. (14.51)

Substituting (14.50) into (14.51) yields

e−α(tk−tk−1)V j+1(Z(tk)) − V j+1(Z(tk−1)) =

∫ tk

tk−1

e−α(τ−tk−1)(V
j+1
Z )

T
[

F(Z(t)) + G(Z(t))Lj (u)

+Kwj + G(Z(t)(L(u) − Lj (u)) + K(w − wj )
]

dt. (14.52)

On the other hand, one has

(V
j+1
Z )T

[

F(Z) + G(Z)Lj (u) + Kwj
]

= αV j+1 − ra(Z(t),Lj (u),wj ), (14.53)

where

ra(Z(t),Lj (u),wj ) = ZTQ1Z + W(L(uj )) − γ 2(wj )Twj .
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Substituting (14.53) into (14.52) yields

e−α(tk−tk−1)V j+1(Z(tk)) − V j+1(Z(tk−1)) =

∫ tk

tk−1

e−α(τ−tk−1)((V
j+1
Z )T

×
[

G(Z(t)(L(u) − Lj (u)) + K(w − wj )
]

− ra(Z(t),Lj (u),wj ))dt. (14.54)

Using (14.43)–(14.45) in (14.54) yields the following off-policy H∞ Bellman equation:

e−α(tk−tk−1)V j+1(Z(tk)) − V j+1(Z(tk−1)) =

∫ tk

tk−1

e−α(τ−tk−1)((vj+1L̄
(

tanhT(vj ) − tanhT(v)
)

+ 2γ 2wj+1(w − wj ) − ra(Z(t),vj ,wj ))dt. (14.55)

Note that if vj andwj are given, the unknown functions V j+1(Z), vj+1 andwj+1 can be approximated

using (14.55). Then Lj+1(u) is found from vj+1.

The elements of Lj+1(u) can be either dependent or independent. If elements in Lj+1(u) are in-

dependent, then the Bellman equation (14.55) can be solved iteratively using stored data to find L⋆(u)

and the optimal control policy is u⋆. The following algorithm shows how to iterate on (14.55) to find

the optimal control policy in this case.

Algorithm 3 Online off-policy RL algorithm for nonaffine system with independent elements in L(u).

1: procedure

2: Start with the control effort L(u) and disturbance input w and collect required system information at N

different sampling intervals T .

3: Given vj and wj , use collected information in step 2 to solve the following Bellman equation for V j+1,

vj+1 and wj+1 simultaneously:

e−α(tk−tk−1)V j+1(Z(tk)) − V j+1(Z(tk−1)) =

∫ tk

tk−1

e−α(τ−tk−1)((vj+1L̄
(

tanhT(vj ) − tanhT(v)
)

+ 2γ 2wj+1(w − wj ) − ra(Z(t),vj ,wj ))dt. (14.56)

4: Stop if

∣

∣

∣
vj+1 − vj

∣

∣

∣
6 ε and

∣

∣

∣
wj+1 − wj

∣

∣

∣
6 ε.

5: Otherwise set j = j + 1 and go to 3.

6: end procedure

Algorithm 3 gives Lj+1(u) and, if the condition of Lemma 2 is satisfied, then the elements of the

control input are uj+1 = −L−1(L̄tanhT(vj+1)). However, if elements in Lj+1(u) are dependent, then

the dependency of its elements must be taken into account by encoding equality constraints while solve

Eq. (14.55) for vj+1.

To find a form for solution constraints L(u) if it has dependent elements, consider the UAV system

in Example 1 with
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L(u(t)) =













L1
L2
L3
L4
L5













=













u1
u2

u22
u2 cos(u3)

u2 sin(u3)













.

Then, the dependency of the elements of L(u) becomes

L3 = L2
2 = L4

2 + L5
2.

This gives the following equality constraints:

L̄3 tanh(v3) = (L̄2 tanh(v2))
2 = (L̄4 tanh(v4))

2 + (L̄5 tanh(v5))
2.

In general, it is seen that one has a vector of equality functions

f(L) = [f1(L), ..., fp(L)]T = 0, (14.57)

with p being the number of dependent elements in L(u). For example for the UAV system, one

has f1 = L̄3 tanh(v3) − (L̄2 tanh(v2))
2, f2 = (L̄2 tanh(v2))

2 − (L̄4 tanh(v4))
2 − (L̄5 tanh(v5))

2 and

f3 = (L̄3 tanh(v3))− (L̄4 tanh(v4))
2− (L̄5 tanh(v5))

2. This constraint must be taken into account when

solving (14.55) for v using NNs.

The following algorithm shows how to find the optimal control solution for the cases where L(u)

has dependent elements. The details of implementation of solving (14.55) for v while considering the

constraint imposed by the independency of elements of v are presented in the next subsection.

Before proceeding, H̄ is defined as

H̄=

∫ tk

tk−1

e−α(τ−tk−1)
(

(vj+1L̄(tanhT(vj ) − tanhT(v)) + 2γ 2wj+1(w − wj ) − ra(Z(t),vj ,wj )
)

dt

− e−α(tk−tk−1)V j+1(Z(tk)) + V j+1(Z(tk−1)).

Algorithm 4 Online off-policy RL algorithm for nonaffine system with dependent elements in L(u).

1: procedure

2: Start with the control effort L(u) and disturbance input w and collect required system information at N

different sampling intervals T .

3: Given vj and wj , use collected information in step 2 to solve the following Bellman equation for V j+1,

vj+1 and wj+1 simultaneously:

min H̄2 s.t. f(v) = 0. (14.58)

4: Stop if
∣

∣

∣
vj+1 − vj

∣

∣

∣
6 ε and

∣

∣

∣
wj+1 − wj

∣

∣

∣
6 ε.

5: Otherwise set j = j + 1 and go to 3.

6: end procedure
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The minimum value of H̄ in Algorithm 4 not considering the constraint (14.57) is zero. If this

algorithm terminates, so that H̄ = 0, then by Theorem 2 the L2 gain problem is solved and there exists

a u⋆ such that L(u⋆) = L⋆(u).

The following subsection shows how to use NNs along with linear and nonlinear LS, respectively,

to implement Algorithms 3 and 4.

14.3.5 NEURAL NETWORKS FOR IMPLEMENTATION OF OFF-POLICY RL
ALGORITHMS

In this subsection, the solution of the off-policy H∞ Bellman equations (14.56) and Eq. (14.58) in

Algorithms 3 and 4 using three NNs is presented. The unknown functions V j+1(Z), vj+1 and wj+1

can be approximated by three NNs as

V̂ j+1(Z) =

N1
∑

i=1

ĉ
j+1
i φi(Z) = Ĉj+1φ(Z), (14.59)

v̂
j+1
i =

N2
∑

k=1

p̂
j+1
i,k σi,k(Z) = P̂

j+1
i σi(Z), (14.60)

ŵ
j+1
i =

N3
∑

k=1

q̂
j+1
i,k ρi,k(Z) = Q̂

j+1
i ρi(Z), (14.61)

where v̂j+1 = [v̂
j+1
1 , ..., v̂

j+1
l ], ŵj+1 = [ŵ

j+1
1 , ..., ŵ

j+1
q ]. The terms φi(Z) = [φi1, ..., φiNi1

], σi(Z) =

[σi1, ..., σiNi2
] and ρi(Z) = [ρi1, ..., ρiN3 ] are basis function vectors, Ĉ

j+1, P̂
j+1
i and Q̂

j+1
i are constant

weight vectors and N1, N2 and N3 are the number of neurons. Substituting (14.59)–(14.61) into the

off-policy H∞ Bellman equation (14.55) yields

e−α(tk−tk−1)Ĉj+1
[

φ(Z(tk)) − φ(Z(tk−1))
]

=

∫ tk

tk−1

e−α(τ−tk−1)(

l
∑

i=1

P̂
j+1
i σi(Z)L̄i(tanh

T(v̂
j
i ) − tanhT(vi))

+ 2γ 2
q

∑

i=1

Q̂
j+1
i ρi(Z)(wi − wi

j ) − ra(Z(t), v̂j , ŵj ))dt. (14.62)

By defining P̂ =
[

P̂1 ... P̂l

]

and Q̂ =
[

Q̂1 ... Q̂q

]

, Eq. (14.62) can be rewritten as

ŴTh(tk) = y(tk), (14.63)

where

Ŵ =
[

(Ĉj+1)
T

(P̂j+1)
T

(Q̂j+1 )T
]T

,
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h(tk) =

































e−α(tk−tk−1)φ(Z(tk)) − φ(Z(tk−1))
∫ tk
tk−1

e−α(τ−tk−1)σ1(Z)L̄1(tanh
T(v̂

j

1 ) − tanhT(v1)) dτ

...
∫ tk
tk−1

e−α(τ−tk−1)σl(Z)L̄l(tanh
T(v̂

j

l ) − tanhT(vl)) dτ

2γ 2
∫ tk
tk−1

e−α(τ−tk−1)ρ1(Z)(w1 − w1
j ) dτ

...

2γ 2
∫ tk
tk−1

e−α(τ−tk−1)ρq(Z)(wq − wq
j ) dτ

































,

y(tk) =

∫ tk

tk−1

e−α(τ−tk−1)ra(Z(t), v̂j , ŵj )) dt.

Case 1: Independency in Elements of L(u)

Eq. (14.63) can be solved using the least square method for parameter vector Ŵ. Then the approximated

value function and disturbance input are (14.59) and (14.61), respectively. The control input ûj+1 is

found by determining L(ûj+1) based on (14.45) from (14.60). The number of unknown parameters Ŵ

is N1 + N2 + N3. Then, at least N > N1 + N2 + N3 data sampled t1 to tN should be collect before

solving (14.63) in the least square sense,

Y =
[

y(t1) ... y(tN )
]T

,

H =
[

h(t1) ... h(tN )
]

.

The least square solution is obtained as

Ŵ = (HHT)−1HY.

Case 2: Dependency in Elements of L(u)

If the elements of L(u) are dependent, one has to solve a constrained nonlinear least square problem

to take into account the equality constraints imposed by the dependency of the elements of L(u). To

show this, consider the case of the UAV in Example 1. The following constraints are considered when

finding the weights of NNs:

L̄3 tanh(P̂
j+1
3 σ3(Z)) = (L̄2 tanh(P̂

j+1
2 σ2(Z)))2 =

(L̄4 tanh(P̂
j+1
4 σ4(Z)))2 + (L̄5 tanh(P̂

j+1
5 σ5(Z)))2.

This constraint is nonlinear in NN weights and thus requires using the nonlinear least square method.

In general, (14.58) becomes

argmin
Ŵ

∥

∥

∥
ŴH − Y

∥

∥

∥

2
s.t. f(P̂j+1, σ1, ..., σl) = 0,

where the function f is defined in (14.57) and depends on how the elements of L(u) and consequently

NN weights are related.
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