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Abstract—Mobile sensing apps have proliferated rapidly over the recent years. Most of them rely on inference components heavily for

detecting interesting activities or contexts. Existing work implements inference components using traditional models designed for

balanced data sets, where the sizes of interesting (positive) and non-interesting (negative) data are comparable. Practically, however,

the positive and negative sensing data are highly imbalanced. For example, a single daily activity such as bicycling or driving usually

occupies a small portion of time, resulting in rare positive instances. Under this circumstance, the trained models based on imbalanced

data tend to mislabel positive ones as negative. In this paper, we propose a new inference framework SLIM based on several machine

learning techniques in order to accommodate the imbalanced nature of sensing data. Especially, guided under-sampling is employed to

obtain balanced labelled subsets, followed by a similarity-based sampling that draws massive unlabelled data to enhance training. To

the best of our knowledge, SLIM is the first model that considers data imbalance in mobile sensing. We prototype two sensing apps and

the experimental results show that SLIM achieves higher recall (activity recognition rate) while maintaining the precision compared

with five classical models. In terms of the overall recall and precision, SLIM is around 12 percent better than the compared solutions

on average.

Index Terms—Mobile sensing applications, imbalanced sensing data, machine learning, under-sampling, semi-supervised learning

Ç

1 INTRODUCTION

SMARTPHONES are proliferating rapidly in recent years
and have become ubiquitous mobile sensing units as

they are equipped with multiple built-in sensors. Various
mobile sensing apps have been investigated and developed
based on sensor readings that provide new dimensions to
interpret and interact with the living world [1], [2], [3]. The
apps range from individual usage to city-scale coverage,
by revealing smartphone users’ activities, contexts, sur-
rounded environment and social events they involved in.

Inference components (or classifiers), which are responsi-
ble for extracting features from the raw sensor data andmak-
ing inferences accordingly, are the key for many mobile
sensing apps [4], [5], [6], [7]. In terms of inference models,
there are two classes of sensing data, i.e., positive class and
negative class. The sensing data belonging to the positive
class represent what the app users are interested in. Thus the
aim of a classifier is to correctly identify positive data instan-
ces from negative ones. Despite the numerous models for
making inferences, most of them include two phases: train-
ing and operating. In the training phase, app developers

collect labelled training sensing data from specific sensors,
and choose a training method to generate an inference
model. In the operating phase, the trainedmodel is deployed
in user smartphones and starts to make inferences on new
sensor data.

A growing number of inference-based apps typically col-
lect a sensing data set and directly use the entire data set to
train a classifier, normally with the accuracy and error rate
as the performance metrics [6], [8]. However, most of them
neglect the imbalanced nature of the data classes. For exam-
ple, bicycling [6] usually occupies a small portion of time
for most people, which results in a small positive data set
and a large negative data set from other daily life activities
for training a bicycling detection component. A lot more
user activities resemble bicycling (such as driving [5] and
taking a bus [9]) with respect to the imbalanced distribution
of the collected sensing data sets. In summary, with smart-
phones accompanying users around the clock, the amount
of generated sensing data is tremendous, yet the interesting
events are rare.

The imbalanced nature of the training sensing data
exposes the deficiency of traditional classifiers, which are
typically designed for balanced training data. For example,
if there is a data set with 10 percent amounts of data belong-
ing to the positive class, and 90 percent negative, then a
naive classifier tends to simply put any new observed sam-
ple in the negative class, achieving a high classification
accuracy of 90 percent. However, the result is obviously
unacceptable as the classifier fails to detect the interesting
positive samples [10].

On the other hand, training a classifier requires a suffi-
cient number of labelled sensing data instances in order to
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obtain high accuracy and generalization ability. Collecting
labelled sensing data is a tedious, expensive, and time-con-
suming task for app developers [11], [12], [13]. A large
amount of inexpensive unlabelled sensing data holds the
potential to alleviate the pain of explicit data labelling [14].
The same dilemma occurs when the user needs to personal-
ize a mobile app. The personalization process typically
requires each user to manually label instances, which is
even more tedious than the labelling process of the app
developer. Hence, mining the unlabelled sensing data on
the user’s smartphone shows a promising direction to alle-
viate the user’s labelling effort. However, those sensing
data are also imbalanced and thus may not directly boost
inference components as expected.

In this work, we accommodate the above challenges by
designing a new inference framework SLIM, Sampling-
based semi-supervised learning with imbalanced multi-
modal sensing data. SLIM adopts an under-sampling
scheme to obtain multiple balanced labelled sensing data
subsets. However, using under-sampling further shrinks
the size of the training subset, which may lead to inaccu-
rate classification result. Considering this, we may resort
to the massive unlabelled sensing data. Yet the unlabelled
sensing data are also imbalanced and cannot be directly
applied. We hence novelly design a sampling scheme to
the unlabelled data according to similarity measurements
based on each balanced labelled subset. The outcome is a
pseudo-balanced training data subset with a sufficiently
large size. Local classifiers can be trained on each bal-
anced sensing data subset, including labelled and unla-
belled instances. Finally, a global inference model is
achieved by synthesizing the prediction results of all
local classifiers.

Furthermore, mobile apps usually adopt multiple
types of sensors in order to make reliable inferences. Dif-
ferent sensors may have different confidence levels in
making decisions. Given this, SLIM is designed to fully
utilize multiple sensors by making inferences on each
sensor dimension, followed by a heuristic confidence-
based combination of multiple sensor dimensions. As a
result, SLIM is highly flexible for any combinations of the
built-in sensors.

To the best of our knowledge, SLIM is the first framework
that extends under-sampling to semi-supervised learning
with a novel similarity-based sampling scheme. Under-
sampling performs well considering imbalanced labelled
data. Yet it requires a large amount of labelled data, which
are expensive to obtain in sensing apps. On the other hand,
semi-supervised learning is good at combining a few
labelled data and large amounts of cheap unlabelled data.
Using these two methods separately will not suffice in sens-
ing apps. Hence we novelly bridge these two methods by
designing a similarity-based sampling scheme, such that
SLIM can enjoy the power of bothmethods.

The main contributions of this work are summarized in
the following:

� The proposed learning framework SLIM is able to
make full use of both imbalanced labelled and unla-
belled sensing data by novelly combining under-
sampling and semi-supervised learning techniques,
resulting in a better inference model for mobile
sensing apps.

� SLIM is highly flexible considering the following
aspects: it accepts any combination of smartphone
built-in sensors for inference; and it adopts diverse
traditional learning methods as basic learners.

� Two prototype mobile apps, bicycling detection and
backing material detection, are proposed for investi-
gating the effectiveness of SLIM. Bicycling detection
aims at examining whether a smartphone user is rid-
ing a bike, while backing material detection is able
to recognize on what material the smartphone is
placed. Through the real experiments, the superiority
of SLIM over five representative inference models is
verified. SLIM obtains average F-Measures (a widely
accepted evaluation metric for imbalanced data clas-
sification as explained in Section 4.4) of 79:6 percent
in bicycling detection and 76:7 percent in backing
material detection, both of which are around 12 per-
cent better than the competitors.

The rest of this paper is organized as follows. Section 2
demonstrates the characteristics of mobile sensing data and
verifies the influence of data disproportion by an experi-
ment. Section 3 presents the problem formulation and the
design of SLIM in detail. Evaluation results of two proto-
type apps are illustrated and discussed in Section 4. Finally,
related works are discussed in Section 5 and conclusions are
drawn in Section 6.

2 MOTIVATION

In this section, the ubiquity of imbalanced data distribution
of sensing apps is demonstrated. The imbalanced nature
uncovers the necessity of developing more suitable infer-
ence components than existing traditional ones. Moreover,
the large potential unlabelled set may alleviate the pain of
acquiring a large labelled set. Yet directly incorporating
them may not help much. As an illustration, a quick experi-
ment is conducted to show the above issues.

Observation 1. Mobile sensing apps usually encounter
imbalanced sensing data due to the following reasons.
First, the time a user spends in an interesting place or
activity only occupies a small portion of time, which
means that the corresponding interesting sensing data
are rare. Table 1 shows the daily activity statistics of
Americans [15]. As can be seen, different categories of
activity occupy imbalanced portions of time. Considering
that mobile apps are usually designed for even finer cate-
gories of activity, the corresponding interesting activities
may appear as minor classes. Second, the diversity of
user places and activities indicates the imbalanced distri-
bution. Given that each activity or place holds the same
amount of sensing data, the data size of a specific place
of activity is small compared to the total data size of all
places and activities.

TABLE 1
Daily Activity Statistics

Activities Eat Work Household Sleep Leisure

Time 5% 32% 7% 35% 21%
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Both temporal and spatial dimensions bring the critical
issue that is ignored in the literature: the collected labelled
data are highly imbalanced for the interesting and non-
interesting classes. In this case, using traditional classifiers
may result in high classification accuracy, yet it covers the
fact that the interesting class may be mis-classified with a
high rate.

Observation 2. One intuitive idea to reduce the effort of
labelling sensing data is to make use of inexpensive unla-
belled sensing data. Then semi-supervised learning techni-
ques can be applied to train app classifiers. However, the
unlabelled sensing data are also imbalanced. Therefore,
using auxiliary unlabelled data may result in helping a little,
or even jeopardizing app classifier training. The massive
unlabelled data that actually belong to the negative class
will further make negative class overwhelm the interesting
positive class. Thus it is not as straightforward as it seems
to incorporate unlabelled sensing data for fast and easy
development of app classifiers.

Experiment 1. To verify the problems discussed above,
we conduct an experiment to examine the performance
of two traditional inference models, supervised and semi-
supervised learning.

Some mobile apps attempted to record and monitor the
exercise level of people [16]. As an example, we would like
to design a classifier that can judge whether a smartphone
user is riding a bike. Using this information the health
monitoring apps can calculate and inform users about their
exercise level. We recruited eight graduate students to
record the accelerometer and GPS readings of their smart-
phones when they perform diverse activities for two
weeks. The training data have an approximate negative-to-
positive class ratio of 10. And we use 10-fold cross valida-
tion to train a SVM, both in supervised and semi-super-
vised paradigms. (More details about the experiments are
provided in Section 4.)

The classification accuracies of supervised and semi-
supervised methods are 94:8 and 94:5 percent, respectively.
The results seem quite encouraging. However, other evalu-
ation metrics are frequently adopted to provide compre-
hensive assessments by introducing the confusion matrix
(Table 2), which records the number of true positives (TP ),
true negatives (TN), false positives (FP ), and false nega-
tives (FN). Among these metrics, precision and recall are
defined as:

Precision ¼ TP

TP þ FP
; (1)

Recall ¼ TP

TP þ FN
: (2)

Precision measures exactness (i.e., how many data instances
labelled as positive are actually from the positive class),

whereas recall measures completeness (i.e., how many data
instances belonging to the positive class are actually labelled
correctly). The results of traditional supervised and semi-
supervised learning methods are shown in Table 3. We can
see that the precision of supervised method is high, while
the recall is less than 50 percent, which means that less than
half of the positive instances are correctly recognized. Con-
sidering that the positive class is of the interest and is rare
with respect to instance number, the result is far from satis-
faction. The recall (or recognition rate) of semi-supervised
method is improved compared to the supervised method.
However, 61:7 percent is still unsatisfying. We deem that
accommodating the imbalanced nature of the sensing data
can help to improve the performance of the classifier.

3 SLIM—BOOSTING APP CLASSIFIERS

Before delving into the design of SLIM, we first give a few
important notations that will be used. For a new app, we use
H to represent its inference component, which is in charge
of classifying a sensing data instance as positive or negative.
The interesting instances are assigned to the positive class P,
while the other instances are categorized to the negative
classN . We use L ¼ fxl;i; yigði ¼ 1; . . . ; NÞ to denote the col-
lected labelled training set and U ¼ fxu;jgðj ¼ 1; . . . ;MÞ to
represent the set of unlabelled sensing data, respectively.
The objective is to train the classifierH to perform effectively
and robustly regarding to the limited number of labelled
sensing data and disproportionate distribution of the entire
data set. The main notations that will be used in the paper
are summarized in Table 4.

In the rest of this section, we first illustrate the frame-
work of SLIM briefly, and then demonstrate the key proce-
dures in detail.

3.1 General Framework of SLIM

The general framework of SLIM is shown in Fig. 1: The neg-
ative labelled data and massive shared unlabelled data are
under-sampled (Sections 3.2 and 3.3) to generate several
subsets. Then on each subset, combining the labelled data, a
local classifier will be trained. A final inference model is an
integration of all local classifiers (Section 3.4).

Specifically, the work flow of training on each subset is
illustrated in Fig. 2. First, the collected negative labelled

TABLE 2
Confusion Matrix

Predictive Positive Class Predictive Negative Class

Actual Positive Class TP (True Positives) FN (False Negatives)
Actual Negative Class FP (False Positives) TN (True Negatives)

TABLE 3
Precision and Recall by Supervised and

Semi-Supervised Learning

Supervised Semi-supervised

Precision 90:1% 75:0%
Recall 49:0% 61:7%
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sensing data set N is divided into T subsets by under-sam-
pling, each possessing the same size as the positive
labelled sensing data P. Each negative subset N t, com-
bined with the positive labelled set P and the large
unlabelled sensing data set U, is then used to sample
pseudo-balanced unlabelled data set Ut by performing
similarity-based sampling. After acquiring T collection of
balanced labelled and unlabelled sensing data set, semi-
supervised learning scheme is adopted to train a classifier
on each data collection. If multiple sensors are used in the

apps, SLIM will automatically evaluate the classification
accuracy for each sensor dimension and combine them
with relative confidence.

3.2 Under-Sampling

For imbalanced labelled training set, a lot of techniques
have been proposed to train a well-performed classifier
[10]. In this paper, we resort to the under-sampling method
[17], [18]. Sampling is a class of methods that can obtain bal-
anced positive and negative classes through altering the
initial disproportionate labelled training set. Specifically,
under-sampling tries to sample a data subset from the nega-
tive class, such that the sampled set is comparable to the
positive set with respect to the sample size. Then the tradi-
tional well-performed learning methods can be employed
against the balanced data subset.

However, the data subset generated by under-sampling
is only a small portion of the huge original data set. Thus
the subset may lose potential useful information of the
whole data set. To overcome this deficiency, we propose to
perform under-sampling for T rounds to the whole data set,
with a heuristic redundancy elimination, i.e., after sampling
an instance from the negative class, the corresponding
instance is removed from the set. After this multi-round
under-sampling, we obtain T subsets of the negative class
that can be used separately for training T classifiers.

3.3 Similarity-Based Sampling

The imbalanced nature of sensing data exists not only in the
collected labelled training set, but also in the unlabelled

Fig. 1. General framework of SLIM.

TABLE 4
Notations

Symbol Description

xl;i=xu;i the ith labelled/unlabelled sensing data
instance

yi the label of the ith sensing data instance
xk
l;i=x

k
u;i

the kth sensor dimension of the ith labelled/
unlabelled sensing data instance

N=M the number of the labelled/unlabelled sensing
data instances

K the number of incorporated sensors
T the number of sampled subsets
L the labelled sensing data set
P=N the positive/negative labelled class
U the unlabelled sensing data set
UP=N P the unlabelled sensing data set with potential

positive/negative label
N t=Ut the tth sampled subset with negative/potential

negative label
Ht the classifier trained on the tth sampled data set

Fig. 2. The work flow of training on each sensing data subset.
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sensing data set. In order to employ unlabelled data, the
imbalanced nature has to be considered in the first place.
Otherwise, training a classifier on the balanced labelled set
and the imbalanced unlabelled set using a semi-supervised
learning technique will result in an inferior classifier similar
to the ones trained on the imbalanced labelled set. As the
unlabelled data has no class information, we cannot apply
under-sampling directly in this situation to generate a sub-
set that is composed of balanced positive and negative
instances. Our intuition is that the sensing data ought to
share more similarities among the instances belonging to
the same class. Thus we propose to perform unlabelled
instance selection in two steps:

� First, for each unlabelled instance xu;j, we compute
its distance to each labelled training instance
xl;i 2 P

S N t, with respect to a similarity-based dis-
tance metric (e.g., Euclidean distance). We assign xu;j

a potential label yu;j ¼ yi, such that the distance
between xl;i and xu;j is the smallest. After computa-
tion, we obtain two labelled sets, positive class UP

and negative class UN , with the property that
jUP j � jUN j.

� Second, perform under-sampling on the negative
class UN to generate a subset Ut, with the constraint
that jU tj ¼ jUP j. Thus we obtain a pseudo-balanced
unlabelled data set.

Note that the labels assigned to the unlabelled instances
here are not required to be very accurate. Both the correctly
and incorrectly labelled instances are helpful for the follow-
ing semi-supervised learning procedure to train a well-per-
formed classifier. The correctly labelled instances enhance
the shared instance properties pertaining to the correspond-
ing class, while the incorrectly labelled instances bring the
ambiguity between the classes, thus guiding the training
procedure to accommodate this ambiguity. In this sense, the
sampled instances may not constitute real balanced positive
and negative classes, and hence we term the generated data
set pseudo-balanced.

To validate the effectiveness of similarity-based sam-
pling, we investigate the data set collected in Section 2
(Experiment 1), where the ratio of the unlabelled and
labelled data is approximately 5. After similarity-based
sampling, the size of the positive class increases by
437 percent. The training set is thus effectively enlarged
considering both positive and negative classes. On the
other hand, the sampled subset has a ground truth posi-
tive-to-negative ratio of 0:84. The resultant subset does not
badly break the balance of the labelled set once incorpo-
rated. Therefore, the enlarged training set, with both
labelled and unlabelled data, is nearly balanced and can
be fed to classifiers.

3.4 Classifier Ensembles

There are two folds considering classifier ensembles: multi-
ple built-in sensors and multiple balanced training data
collections. Smartphones nowadays are equipped with mul-
tiple sensors, such as accelerometer, GPS, gyroscope, etc.
These sensors can be selected and combined for different
mobile apps. Typically, assume that the app developer
would like to incorporate K sensors to make inference, then

there will be K separate dimensions to describe the charac-
teristics of the app. Usually, some sensor dimensions are
more reliable or confident in predicting certain events, thus
it is necessary to differentiate the classification ability of
multiple sensors. In our framework, we first train classifiers

H
ðkÞ
t ðxðkÞÞ, k ¼ 1; . . . ; K, on each sensor dimension. Then we

combine these classifiers with the weights reflecting the con-
fidence of corresponding sensor dimension [19], [20]:

HtðxÞ ¼
XK

k¼1
akH

ðkÞ
t

�
xðkÞ

�
; (3)

where ak ¼ 1
2 logð1�"k"k

Þ represents the prediction confidence

of classifier H
ðkÞ
t ðxðkÞÞ (i.e., ak reflects the confidence of the

kth sensing dimension), and "k is the error rate of the classi-

fierH
ðkÞ
t ðxðkÞÞ.

On the other hand, we have generated T data collections
that are used to train classifiers Ht in parallel. Borrowing
the idea of majority-voting scheme, where the decision is
conformed to the most experts’ decisions, we construct a
synthetic final classifier:

HðxÞ ¼ sgn

�XT

t¼1
HtðxÞ � u

�

; (4)

where sgnðhÞ is a sign function:

sgnðhÞ ¼ 1 h > 0;
�1 h <¼ 0;

�

(5)

and u is a threshold parameter that indicates how aggressive
the classifier is. If u is small, the classifier tends to label an
instance as positive with fewer supports; otherwise the clas-
sifier tends to label an instance as positive with more sup-
ports. For example, given that HtðxÞ 2 f�1; 1g and T ¼ 5, if
u ¼ 0, labelling a new observed sensing instance x as posi-
tive requires three or more classifiers HtðxÞ agreeing that x
belongs to the positive class. If u ¼ 4, estimating x as a posi-
tive instance requires that all five classifiers HtðxÞ label the
instance x as positive.

3.5 Procedures of SLIM

Algorithm 1 summarizes the main procedures of SLIM.
Lines 4 and 5 sample the subset of negative class with elimi-
nation operation. Lines 6 to 13 compute similarities of unla-
belled and labelled sensing data and generate pseudo-
balanced unlabelled subset for training. The combination of
different sensor dimensions is achieved from Lines 14 to 19.
Finally, The outer for-loop controls how many local classi-
fiers will be trained for the final ensemble. Two key parame-
ters in SLIM are subset number T and threshold value u,
both of which will be investigated and discussed in the eval-
uation part (Section 4).

3.6 SVM-Based Implementation

The proposed SLIM is a general framework, which can adopt
many different specific classifiers. In this sense, the frame-
work can be widely applied to diverse mobile app infer-
ences. In this paper, we implement the framework by using
support vector machine (SVM), which has been widely
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adopted in mobile sensing [5], [21], [22]. Suppose that we
have a labelled training set L ¼ fxl;i; yigði ¼ 1; . . . ; NÞ, view-

ing each sensing data feature xl;i 2 Rd, whereRd represents a
d-dimensional space, and yi 2 f1;�1g, where 1 means posi-
tive class and �1 means negative class. The classification
task is equivalent to finding a hyperplane that can separate
the sensing data point from the positive and negative classes.
Define the ”margin” of a separating plane as the smallest dis-
tance from the plane to the closest postive/negative sensing
data point. SVM would try to find the hyperplane with the
largestmargin. In the presence ofmassive unlabelled sensing
data U ¼ fxu;jgðj ¼ 1; . . . ;MÞ, the goal becomes finding a

function f:Rd ! f1;�1g such that the following functional
is minimized [23]:

min
f

kfk2H
2
þ C1

XN

i¼1
l
�
yl;i; fðxl;iÞ

�þ C2

XM

j¼1
lsym

�
fðxu;jÞ

�
; (6)

where H is a reproducing kernel Hilbert space (RKHS),
lðy; fðxÞÞ ¼ maxf0; 1� yfðxÞg and lsymðfðxÞÞ ¼ maxf0; 1�
jfðxÞjg are hinge loss and symmetric hinge loss, respectively.
C1 and C2 are regularization parameters that control model
complexity. For more details of semi-supervised SVM, we
referinterestedreadersto[23],[24].

Algorithm 1. SLIM

1: Compute features x from the raw data for each

sensor, forming labelled training set L ¼ fxl;i; yigNi¼1,
and unlabelled training set U ¼ fxu;jgMj¼1;

2: Select the positive class P � L and negative class
N � L;

3: for t ¼ 1 to T do
4: Draw random subsetN t � N , s.t. jN tj ¼ jPj;
5: N  N =N t;
6: for j ¼ 1 toM do
7: Compute p, s.t.
8: xl;p ¼ argmaxxl;i2P

S
N t

Simðxu;j; xl;iÞ;
9: Assign yu;j ¼ yp;

10: end for
11: Let UP ¼ fxu;j j yu;j ¼ 1g, UN ¼ fxu;j j yu;j ¼ �1g;
12: Sample Ut � UN , s.t. jUtj ¼ jUP j;
13: Ut  UP

S U t;
14: for k ¼ 1 toK do
15: TrainH

ðkÞ
t on P S N t

S U t by semi-supervised
learning;

16: Compute error rate "k forH
ðkÞ
t ;

17: Compute weight for sensor k: ak ¼ 1
2 logð1�"k"k

Þ;
18: end for
19: Ht ¼

PK
k¼1 akH

ðkÞ
t ;

20: end for
21: Compute final classifier, H ¼ sgnðPT

t¼1 Ht � uÞ;

4 EVALUATION

In this section, the performance of SLIM is evaluated by
comparing with two traditional inference models for bal-
anced data and three inference models for imbalanced data.
Specifically, as in our implementation SVM is adopted as a

basic inference component, we will use the following SVM
based models as competitors:

� SVM. We implement a traditional supervised SVM
on the collected imbalanced labelled sensing data.

� S3VM. S3VM is a semi-supervised SVM on the col-
lected imbalanced sensing data, including labelled
and unlabelled data.

� UNDER-SVM. UNDER-SVM is an undersampling
based SVM, which randomly draws a subset of nega-
tive data instances and train a SVM on the under-
sampled data [25]. The percentage of undersampled
negative data instances is determined by grid search.

� SMOTE-SVM. SMOTE-SVM is an oversampling
based SVM, which uses the SMOTE algorithm [26] to
generate pseudo positive data instances and train a
SVM on the oversampled data [25]. The ratio of over-
sampled positive data is determined by grid search.

� WEIGHT-SVM. WEIGHT-SVM is a cost sensitive
learning based SVM, which assigns higher penalties
to the false negative instances (FNs) than the false
positive instances (FPs) [27], [28]. The weight ratio
between FNs and FPs is decided by grid search.

4.1 Prototype Apps

4.1.1 Bicycling Detection

Context-aware mobile apps are proliferating rapidly
recently. Recognizing smartphone users’ context informa-
tion, such as indoor/outdoor, at home/in office, driving/
walking, can help to provide fine-grained mobile comput-
ing services. For example, when a smartphone detects that
the user is driving, it can automatically block phone calls in
the user’s hand for the sake of safety. When a user is in a
building, it is better to turn the smartphone’s GPS off to
save energy [29]. In contrast, when a user goes to the open
countryside, WiFi is usually unavailable and should be
turned off. In summary, classifying users’ context lays a
foundation for large amounts of mobile apps.

To verify the effectiveness of SLIM in such apps, we pro-
totype a proof-of-concept bicycling detection app, which is
able to inference whether a user is riding. Bicycling detec-
tion information is useful for multiple mobile apps. For
example, recording the biking sensing data can help to mon-
itor the cyclist experience: distance traveled, calories
burned, path incline, etc. In short, knowing that a person is
riding a bike can be useful for recording the exercise experi-
ence of the individual as well as the surrounding environ-
mental conditions [30]. In this sense, for a normal user with
only a smartphone and no other special devices, it would be
valuable to infer whether the user is riding.

We use two smartphone built-in sensors, accelerometer
and GPS, for collecting raw sensing data. Each accelerome-
ter reading contains an x, y, and z value corresponding to
three axes. We generate a total of 13 features for training
inference model. The features include: average acceleration
for each axis, standard deviation for each axis, average abso-
lute difference between the value of each of the readings
within the example duration and the mean value of those
readings for each axis, average resultant acceleration, and
time between peaks in the sinusoidal waves associated with
most activities for each axis. For GPS, we generate
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commonly used features, including magnitude, variance,
first derivative, and most dominant frequency components
of the data histogram.

4.1.2 Backing Material Detection

Different from the human-centric context sensing men-
tioned above, we also investigate environment sensing con-
cerning the smartphone’s perspective. Similar to human-
centric contexts, being aware of smartphones’ environment
is directly beneficial to a broad range of mobile apps. For
example, if a smartphone is in a bag or pocket, it is useless
to light up the screen when receiving a phone call. If a
smartphone is placed on a sofa rather than on a desk, it is
better to raise the volume of the phone ring to avoid missing
calls. In many situations, the environment information is
helpful for fine-tuning the smartphone’s behavior.

As a proof of concept, we design a mobile sensing app
named backing material detection. Backing material detec-
tion aims at distinguishing hard/soft material via smart-
phone-generated vibration patterns: the mechanical motion
and the acoustical features. The vibration patterns can be
captured by embedded accelerometer and microphone. For
accelerometer, we adopt the same set of features as those
proposed in bicycling detection. For microphone, we use
zero crossing rate (ZCR), spectral centroid (SC), and Mel-
frequency cepstral coefficient (MFCC). we select two repre-
sentative materials with different stiffness for recognition:
mattress (soft) and wooden desk (hard). In each scenario,
the phone motor is triggered to vibrate for 7 seconds, and
the corresponding acceleration readings and sounds are
recorded.

4.2 Experiment Device

To give a comprehensive evaluation, we implement SLIM
on three different types of smartphones (Samsung Galaxy
S2 I9100, Samsung Nexus3 I9250, Motorola MT788). All
types of phones are equipped with the necessary sensors,
including microphone, accelerometer and GPS. The Sam-
sung S2 Galaxy I9100 has a 1 GB RAM and dual-core
1.2 GHz processor; the Samsung Nexus3 I9250 is equipped
with 1 GB RAM and dual-core 1.5 GHz processor; the
Motorola MT788 has 1 GM RAM and single-core 2.0 GHz
processor.

4.3 Experiment Setting

We recruit eight volunteers (four males and four females) to
collect raw sensing data for both apps. The volunteers are
required to record the ground truth activities during the
day with memo widget [31]. For bicycling detection, the vol-
unteers record data from multiple daily activities on cam-
pus for two weeks. For backing material detection, the
volunteers are asked to place their smartphones on as many
material as possible for one week, including desk, mattress,
sofa, chair, bag, and so on. We have collected around 7,000
data instances for bicycling detection and 2,800 data instan-
ces for backing material detection. The collected data set is
divided into labelled set and unlabelled set (with ratio
around 1/5), and is used for training with 10-fold cross
validation.

The compared algorithms are implemented in Matlab
based on the famous SVM tool LIBSVM [32]. For all

competitors, we use the same linear kernel function so that
their performances are comparable. For the training/testing
process, we have normalized the input data (sensing data
features) so that each input feature has 0 mean and 1 stan-
dard deviation. All algorithms are executed on the normal-
ized data and the model specific parameters are optimized
by grid search.

4.4 Evaluation Metrics

We have already introduced two evaluation metrics in
section 2, i.e., precision and recall. Precision and recall are
suitable for imbalanced data learning as they are not both
sensitive to changes in data distributions. As we can see,
precision [Eq. (1)] is sensitive to data distributions, while
recall [Eq. (2)] is not. Precision cannot assert how many pos-
itive instances are labelled correctly, while recall cannot
provide information about how many instances are incor-
rectly labelled as positive. It is more appropriate to combine
both metrics for comprehensively understanding classifica-
tion performance in imbalanced data scenarios. As a repre-
sentative, F-Measure (or F-Score) metric [33], [34], as
defined in Eq. (7), combines precision and recall as an effec-
tiveness measurement of classification in terms of ratio of
the importance on both recall and precision. The parameter
b is a coefficient to adjust the relative weight of precision
and recall, and is usually set to 1 [10] (We adopt b ¼ 1 in
this paper). As a result, F-Measure provides more insight
into the classifying ability than the accuracy metric. In our
experiments, we will compare the accuracy, precision, recall
and F-Measure of SLIM and two traditional classifiers.

F -Measure ¼ ð1þ b2Þ � Recall � Precision
Recallþ b2 � Precision : (7)

4.5 Performance

4.5.1 Accuracy and F-Measure

As discussed in Section 4.4, the overall performance can be
compared by investigating the values of accuracy and
F-Measure. Fig. 3 shows that, for all three experiments (bicy-
cling detection, desk detection, mattress detection), the clas-
sification accuracy of all inference models, except for
UNDER-SVM, are comparable and quite satisfied (around
95 percent for bicycling detection and 90 percent for desk
and mattress detection). UNDER-SVM is inferior to the
other methods considering accuracy.

Considering the F-Measure, the proposed SLIM is the
highest in all three cases, with around 12 percent average
improvement over the other five models. The imbalanced
models (i.e., UNDER-SVM, SMOTE-SVM, and WEIGHT-
SVM) achieve higher F-Measures than the traditional SVM,
which conforms with the design theory of these models. Yet
their performances are inferior to SLIM, since these models
do not make use of the abundant unlabelled sensing data to
facilitate learning. On the other hand, S3VM incorporates
both labelled and unlabelled sensing data for training.
S3VM performs better than SVM and imbalanced models in
desk detection (Fig. 3b), yet it loses when comparing to
SLIM. In fact, in bicycling detection (Fig. 3a) and mattress
detection (Fig. 3c), S3VM performs even worse than imbal-
anced models. The reason is that, though unlabelled sensing

ZHANG ET AL.: BOOSTING MOBILE APPS UNDER IMBALANCED SENSING DATA 1157

Authorized licensed use limited to: Michigan State University. Downloaded on July 13,2021 at 14:50:10 UTC from IEEE Xplore.  Restrictions apply. 



data increase the size of training set, the data are also imbal-
anced in nature. Hence unlabelled data may improve the
performance in semi-supervised model in some cases, and
may enhance the distribution skew so severely that it has
canceled the benefit brought by more training data in other
cases. To summarize, the proposed SLIM performs consis-
tently better than the imbalanced models and semi-super-
vised model.

4.5.2 Precision and Recall

To investigate the detail performance of the six models, we
can refer to the precision and recall results in Fig. 4. The pre-
cision of SVM is the highest among the six models, while its
recall is much lower than the other five models. Considering
that precision represents exactness measurement (i.e., how
many data instances labelled as positive by the classifier are
actually from the positive class) and recall represents com-
pleteness measurement (how many data instances belong-
ing to the positive class are actually labelled correctly), SVM
is highly skewed that it sacrifices the chances to classify an
instance as positive in order to get a high precision value.
UNDER-SVM gives the other extreme performance. It
achieves the highest recall at the cost of lowest precision.
The result is reasonable as the undersampling scheme
adopted by UNDER-SVM loses much valuable information
about the negative class.

For a practical application, these two extreme performan-
ces are unacceptable. Hence the other four models inher-
ently try to balance the precision and recall values. S3VM
benefits from the auxiliary unlabelled data, while SMOTE-
SVM and WEIGHT-SVM make use balancing techniques.
The proposed SLIM makes good use of both unlabelled
data and balancing techniques, and hence performs best
among these models.

4.5.3 The Effect of Sampling Subset Number T

The number of sampling subset T is an important parame-
ter in SLIM, as it reflects the coverage degree of the sensing
data. Typically, if the distribution of sensing data is bal-
anced for both positive and negative class, the large differ-
ence of instance numbers of training data will not be of
great influence. For example, if the two classes are gener-
ated from two Gaussian distributions with standard devia-
tion that are far away from each other, the different
number of samples generated from these distributions will
not make a classifier perform poorly. However, in reality,
the sensing data are not distributed symmetrically. Sam-
pling few instances from the negative class can only repre-
sent a small coverage. From Fig. 5 we can see that, when
the subset number is small, the precision and recall of
SLIM have a large gap, with recall extremely high and pre-
cision extremely low. With the increment of the subset
number, the gap of precision and recall gets smaller and
smaller. And finally, when the subset number is large
enough, SLIM achieves better performance, with both pre-
cision and recall getting stable.

4.5.4 The Effect of Threshold u

The threshold parameter u controls the aggressiveness of the
final classifier [Eq. (4)]. When u is small, SLIM will recognize
a positive instance with a low standard, i.e., only a few of
the classifiers trained on subsets are needed to agree that
the instance is positive. This behavior results in low preci-
sion and high recall, as shown in Fig. 6. With the increment
of u, the precision and recall become more balanced. The
result is expected, as each classifier trained on different sub-
sets only reflects the data features of the corresponding sub-
set. If one of the classifier considers that the instance is
positive, it can only be induced that the instance is a

Fig. 4. Precision and recall.

Fig. 3. Accuracy and F-measure.
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potential real positive instance. With more and more classi-
fiers voting on the instance, the confidence gets higher. The
results of all experiments indicate that a stricter SLIM will
generate more balanced performance considering precision
and recall.

5 RELATED WORK

Context sensing. Context sensing applications are related to
our work as many of them require inference components.
SoundSense [4] models sound events on mobile phones to
achieve context recognition. Jigsaw [35] constructs a gen-
eral-purposed pipeline-based engine to support continuous
sensing applications on mobile phones. IODetector [29] pro-
vides an indoor/outdoor detection service via the collabora-
tion of phone sensors. CarSafe [5] detects and alerts drivers
to dangerous driving conditions and behavior by using
duel cameras of smartphones. These works provide applica-
tion scenes for our work when the characteristic of sensing
data distribution is incorporated.

Ensemble of classifiers. Many prior context sensing engines
largely aimed at optimizing individual classifiers [35], [36].
Recently, some works try to integrate multiple classifiers. A
context querying engine for mobile phones is proposed in
[37]. The engine is able to plug in different classifiers. CQue
[38] allows individual classifiers to be easily integrated
without worrying about how to leverage other contexts to
improve performance and efficiency. Our work also consid-
ers combining different classifiers. However, the combina-
tions of classifiers are represented in two folds: combination
of multiple sensing dimensions and combination of multi-
ple training subsets.

Semi-supervised learning. Recent works also considered
employing semi-supervised schemes [13], [14], such that

the unlabelled sensing data can be incorporated for train-
ing robust classifiers with a few labelled sensing data. In
[13], semi-supervised learning techniques are used to
sample additional sensing data from diverse operating
environments and multiple devices. In [14], the authors
make use of unlabelled data to bootstrap new apps with a
small initial training data set. These works haven’t con-
sidered the imbalanced nature of sensing data and
employ traditional semi-supervised paradigms. Our
work, on the contrary, explicitly investigates the difficulty
of the imbalanced sensing data and designs a sampling-
based approach.

Under-sampling. Under-sampling schemes have been
studied for imbalanced learning in machine learning [17],
[18], [39], [40]. In [17], two ensemble algorithms (EasyEn-
semble and BalanceCascade) are proposed. EasyEnsemble
samples independent subsets from majority class, while
BalanceCascade uses trained classifiers to guide the
sampling process for subsequent classifiers. In [18], four
KNN under-sampling methods are proposed based on the
characteristics of the given data distribution. One-sided
selection (OSS) method is proposed in [40], where a repre-
sentative subset of the majority class is selected and com-
bined with the minority class, forming a preliminary set.
Further refinement using data cleaning technique is then
applied to the preliminary set. GSVM-RU [39] takes advan-
tage of granular support vector machines (GSVM) by using
an iterative learning process that uses SVM itself for under-
sampling. All of these under-sampling schemes are
designed for supervised learning framework. In this work,
we adapt under-sampling to mobile sensing apps with
both labelled and unlabelled data based on feature similar-
ity measurement.

Fig. 6. Classification performance with different threshold u.

Fig. 5. Classification performance with different number of subsets T .
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6 CONCLUSION

Havingwell-performed inference components provides great
opportunities for developing diverse mobile apps. In this
paper, we have presented SLIM, a new inference framework
that overcomes several challenges in training inference com-
ponents. Firstly, the imbalanced nature of sensing data ren-
ders traditional trainingmodels inappropriate. SLIM resolves
this problem by resorting to under-sampling schemes, such
that several balanced data subsets can be used to train reliable
classifiers. Secondly, acquiring sufficient labelled sensing
data to train a classifier is expensive and time-consuming.
SLIM makes use of abundant unlabelled sensing data shared
by existing mobile apps to facilitate model training, such that
only a small set of labelled data is needed. Lastly, SLIM is able
to incorporate and differentiate multiple built-in sensors.
Thus it is flexible for diversemobile apps.

Two proof-of-concept mobile apps, bicycling detection
and backing material detection, are designed to investigate
the performance of SLIM. We compare SLIM with represen-
tative supervised and semi-supervised learning paradigms
on several evaluation metrics (including accuracy, preci-
sion, recall, F-Measure). The results show that even though
all three methods perform well considering accuracy, SLIM
performs much better than the other two classical methods
considering F-Measures. Therefore, SLIM is more promising
to train inference models for mobile sensing apps.

As sensing data from other applications are employed in
SLIM, the data privacy and security may be of concern in
practice. In the future work, we will apply SLIM to more
mobile sensing applications and design mechanisms for
protecting data privacy and security.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC Major Pro-
gram 61190110, NSFC under Grants 61171067 and 61133016,
and the NSFC Distinguished Young Scholars Program
under Grant 61125202.

REFERENCES

[1] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A.
Peterson, H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn,
“The rise of people-centric sensing,” IEEE Internet Comput.,
vol. 12, no. 4, pp. 12–21, Jul./Aug. 2008.

[2] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. T. Campbell, “A survey of mobile phone sensing,” IEEE Com-
mun. Mag., vol. 48, no. 9, pp. 140–150, Sep. 2010.

[3] M. Srivastava, T. Abdelzaher, and B. Szymanski, “Human-centric
sensing,” Philosoph. Trans. R. Soc. A: Math., Phys. Eng. Sci., vol. 370,
no. 1958, pp. 176–197, 2012.

[4] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell,
“Soundsense: scalable sound sensing for people-centric applica-
tions on mobile phones,” in Proc. ACM Int. Conf. Mobile Syst.,
Appl., Serv., 2009, pp. 165–178.

[5] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen, T. J. Bao,
Y. Cheng, M. Lin, L. Torresani, and A. T. Campbell, “Carsafe app:
Alerting drowsy and distracted drivers using dual cameras on
smartphones,” in Proc. ACM Int. Conf. Mobile Syst., Appl., Serv.,
2013, pp. 13–26.

[6] A. Zhan, M. Chang, Y. Chen, and A. Terzis, “Accurate caloric
expenditure of bicyclists using cellphones,” in Proc. ACM Conf.
Embedded Netw. Sens. Syst., 2012, pp. 71–84.

[7] W.Hu, G. Cao, S. V. Krishanamurthy, and P.Mohapatra, “Mobility-
assisted energy-aware user contact detection in mobile social
networks,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2013,
pp. 155–164.

[8] B. Liu, Y. Jiang, F. Sha, and R. Govindan, “Cloud-enabled privacy-
preserving collaborative learning for mobile sensing,” in Proc.
ACM Conf. Embedded Netw. Sens. Syst., 2012, pp. 57–70.

[9] P. Zhou, Y. Zheng, and M. Li, “How long to wait? Predicting bus
arrival time with mobile phone based participatory sensing,”
IEEE Trans. Mobile Comput., vol. 13, no. 6, pp. 1228–1241, Jun. 2014.

[10] H. He, and E. A. Garcia, “Learning from imbalanced data,” IEEE
Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Jul. 2009.

[11] H.-T. Cheng, F.-T. Sun, M. Griss, P. Davis, J. Li, and D. You,
“Nuactiv: Recognizing unseen new activities using semantic attri-
bute-based learning,” in Proc. ACM Int. Conf. Mobile Syst., Appl.
Serv., 2013, pp. 361–374.

[12] M. Stikic, D. Larlus, S. Ebert, and B. Schiele, “Weakly supervised
recognition of daily life activities with wearable sensors,” IEEE
Trans. Pattern Anal. Mach. Intel., vol. 33, no. 12, pp. 2521–2537,
Dec. 2011.

[13] E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury,
Z. Liu, and A. T. Campbell, “Darwin phones: The evolution of
sensing and inference on mobile phones,” in Proc. ACM Int. Conf.
Mobile Syst., Appl. Serv., 2010, pp. 5–20.

[14] X. Bao, P. Bahl, A. Kansal, D. Chu, R. R. Choudhury, and A. Wol-
man, “Helping mobile apps bootstrap with fewer users,” in Proc.
ACM Conf. Ubiquitous Comput., 2012, pp. 491–500.

[15] Daily activity statistics—statistics brain. (2012). [Online]. Avail-
able: http://statisticbrain.com/average-daily-activities/

[16] T. Denning, A. Andrew, R. Chaudhri, C. Hartung, J. Lester,
G. Borriello, and G. Duncan, “Balance: Towards a usable pervasive
wellness application with accurate activity inference,” in Proc.
ACM Int. WorkshopMobile Comput. Syst. Appl., 2009, pp. 5:1–5:6.

[17] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 39, no. 2, pp. 539–550, May 2009.

[18] I. Mani and I. Zhang, “knn approach to unbalanced data distribu-
tions: A case study involving information extraction,” in Proc. Int.
Conf. Mach. Learn. Workshop Learning Imbalanced Datasets, 2003.

[19] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” J. Comput.
Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997.

[20] Z.-H. Zhou, “Ensemble learning,” in Encyclopedia of Biometrics.
New York, NY, USA: Springer, 2009, pp. 270–273.

[21] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: Your finger taps have fingerprints,” in Proc. ACM Int.
Conf. Mobile Systems, Appl., and Serv., 2012.

[22] J. Manweiler, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi,
“Predicting length of stay at wifi hotspots,” in Proc. IEEE Int. Conf.
Comput. Commun., 2013, pp. 323–336.

[23] Y.-F. Li and Z. H. Zhou, “Towards making unlabeled data never
hurt,” in Proc. Int. Conf. Mach. Learn., 2011, pp. 1081–1088.

[24] K. Bennett and A. Demiriz, “Semi-supervised support vector
machines,” in Proc. Adv. Neural Inf. Process. Syst., 1998, pp. 368–374.

[25] R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector
machines to imbalanced datasets,” in Proc. Eur. Conf. Mach. Learn-
ing, 2004, pp. 39–50.

[26] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” J. Artif.
Intel. Res., vol. 16, pp. 341–378, 2002.

[27] E. Osuna, R. Freund, and F. Girosi, “Support vector machines:
Training and applications,” Tech. Rep.144, 1997.

[28] K. Veropoulos, C. Campbell, and N. Cristianini, , “Controlling the
sensitivity of support vector machines,” in Proc. Int. Joint Conf.
Artif. Intel., 1999, pp. 55–60.

[29] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen, “Iodetector: A
generic service for indoor outdoor detection,” in Proc. ACM Conf.
Embedded Netw. Sens. Syst., 2012, pp. 113–126.

[30] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T. Campbell, “Bikenet: A mobile sensing system for cyclist
experience mapping,” ACM Trans. Sens. Netw., vol. 6, no. 1, p. 6,
2009.

[31] Memo widget. (2013). [Online]. Available: https://play.google.
com/store/apps/details? id=com.about jsp.memowidget

[32] C.-C. Chang, and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. and Technol., vol. 2, no. 3,
pp. 27:1–27:27, 2011.

[33] N. Chinchor, “Muc-4 evaluation metrics,” in Proc. Conf. Message
Understanding, 1992, pp. 69–78.

[34] C. J. van Rijsbergen, Information Retrieval. London, U.K.: Butter-
worths, 1979.

1160 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 6, JUNE 2015

Authorized licensed use limited to: Michigan State University. Downloaded on July 13,2021 at 14:50:10 UTC from IEEE Xplore.  Restrictions apply. 



[35] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.
Campbell, “The jigsaw continuous sensing engine for mobile
phone applications,” in Proc. ACM Conf. Embedded Netw. Sens.
Syst., 2010, pp. 71–84.

[36] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition
using cell phone accelerometers,” ACM SIGKDD Explorations
Newsletter, vol. 12, no. 2, pp. 74–82, 2011.

[37] D. Chu, N. D. Lane, T. T.-T. Lai, C. Pang, X. Meng, Q. Guo, F. Li,
and F. Zhao, “Balancing energy, latency and accuracy for mobile
sensor data classification,” in Proc. ACM Conf. Embedded Netw.
Sens. Syst., 2011, pp. 54–67.

[38] A. Parate, M.-C. Chiu, D. Ganesan, and B. M. Marlin, “Leveraging
graphical models to improve accuracy and reduce privacy risks of
mobile sensing,” in Proc. ACM Int. Conf. Mobile Systems, Appl.
Serv., 2013, pp. 83–96.

[39] Y. Tang and Y.-Q. Zhang, “Granular SVM with repetitive under-
sampling for highly imbalanced protein homology prediction,” in
Proc. IEEE Int. Conf. Granular Comput., 2006, pp. 457–460.

[40] M. Kubat and S. Matwin, “Addressing the curse of imbalanced
training sets: one-sided selection,” in Proc. Int. Conf. Mach. Learn-
ing, 1997, pp. 179–186.

Xinglin Zhang received the BE degree in soft-
ware engineering from Sun Yat-sen University in
2010, and the PhD degree in computer science
from Hong Kong University of Science and Tech-
nology in 2014. He is currently doing research at
Tsinghua University. His main research interests
include wireless ad-hoc/sensor networks, mobile
computing, and crowdsourcing. He is a student
member of the IEEE and the ACM.

Zheng Yang received the BE degree in computer
science from Tsinghua University in 2006, and
the PhD degree in computer science from Hong
Kong University of Science and Technology in
2010. He is currently a faculty member at Tsing-
hua University. His main research interests
include wireless ad-hoc/sensor networks and
mobile computing. He is a member of the IEEE
and the ACM.

Longfei Shangguan received the BS degree
from the School of Software from Xidian Univer-
sity, China, in 2011. He is currently working
toward the PhD degree in the Department of
Computer Science and Engineering, Hong Kong
University of Science and Technology. His cur-
rent research interests include pervasive comput-
ing, wireless sensor networks and RFID system.
He is a student member of the IEEE and ACM.

Yunhao Liu received the BS degree in automa-
tion from Tsinghua University, China, in 1995,
and the MS and PhD degrees in computer sci-
ence and engineering from Michigan State
University, in 2003 and 2004, respectively. He is
currently a professor with Tsinghua University.
His current research interests include wireless
sensor network, peer-to-peer computing, and
pervasive computing. He is a senior member of
the IEEE.

Lei Chen received the BS degree in computer
science and engineering from Tianjin University,
China, in 1994, the MA degree from the Asian
Institute of Technology, Thailand, in 1997, and
the PhD degree in computer science from the
University of Waterloo, Canada, in 2005. He is
currently an associate professor in the Depart-
ment of Computer Science and Engineering,
Hong Kong University of Science and Technol-
ogy. His current research interests include crowd-
sourcing on social networks, uncertain and

probabilistic databases, web data management, multimedia and time
series databases, and privacy. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: BOOSTING MOBILE APPS UNDER IMBALANCED SENSING DATA 1161

Authorized licensed use limited to: Michigan State University. Downloaded on July 13,2021 at 14:50:10 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


