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Abstract

Research has shown that family mealtime plays a critical role in establishing good relationships 

among family members and maintaining their physical and mental health. In particular, regularly 

eating dinner as a family significantly reduces prevalence of obesity. However, American families 

with children spend only 1 hour on family meals while three hours watching TV on an average 

work day. Fine-grained activity-logging is proven effective for increasing self-awareness and 

motivating people to modify their life styles for improved wellness. This paper presents 

FamilyLog – a practical system to log family mealtime activities using smartphones and 

smartwatches. FamilyLog automatically detects and logs details of activities during the mealtime, 

including occurrence and duration of meal, conversations, participants, TV viewing etc., in an 

unobtrusive manner. Based on the sensor data collected from real families, we carefully design 

robust yet lightweight signal features from a set of complex activities during the meal, including 

clattering sound, arm gestures of eating, human voice, TV sound, etc. Moreover, FamilyLog 

opportunistically fuses data from built-in sensors of multiple mobile devices available in a family 

through an HMM-based classifier. To evaluate the real-world performance of FamilyLog, we 

perform extensive experiments that consist of 77 days of sensor data from 37 subjects in 8 families 

with children. Our results show that FamilyLog can detect those events with high accuracy across 

different families and home environments.

I. Introduction

Research has shown that the family mealtime plays a critical role in establishing good 

relationships among family members and maintaining their physical and mental health [5][9]

[7]. In addition to the implications for family health, fine-grained analysis of family 

mealtime enables important studies in sociology and home economy. For instance, research 

has showed that the amount of shared time (including conversation and eating) between 

spouses and between parents and children have strong links with family income, mother’s 

employment status, ages of children, and geographic location (urban or rural) [6][13][12]. 

However, according to a national survey in 2014, American families with children on an 
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average work day spend almost 3 hours watching TV accounting for more than half of the 

leisure and sport time, while only 1 hour for family meal [24].

It is shown that activity logging is a very effective approach to improving the self-awareness 

and motivating people to modify their behaviors toward a healthy lifestyle [11]. 

Unfortunately, to date, there has been no unobtrusive and convenient methods to log family 

meals and related activities. Some of the available methods for family activity monitoring 

rely on video-taping [8], which not only incurs considerable installation/analysis costs, but 

also raises privacy concerns. There has been a number of studies on activity recognition 

using personal wearables and smartphones [19] [33]. However, as we argue in this paper, 

detecting the activity of individual family members separately is insufficient for studying 

family communications, e.g., due to the fact that young children are usually not allowed to 

carry personal devices.

This paper presents FamilyLog – the first practical system to log family mealtime activities 

using smartphones and smartwatches. FamilyLog uses the built-in accelerometer and 

microphone of the smartphone/smartwatch to detect mealtime activities that are closely 

related to family wellness, including occurrence, duration, and participants of the family 

meal as well as conversations and TV viewing during the meal. By providing a detailed 

record of the family mealtime activities, FamilyLog empowers family members to actively 

engage in making positive changes to improve family wellness, e.g., preventing child 

obesity.

The design of FamilyLog faces several challenges such as the significant interference from 

various noises in the home. Moreover, uploading sensor data to the cloud is often 

undesirable due to the privacy concerns. To address these challenges, we carefully design 

several lightweight acoustic and motion features based on in-depth analysis of data sets from 

multiple families. Furthermore, FamilyLog employs novel HMM-based sensor fusion 

techniques to opportunistically leverage multiple built-in sensor modalities of mobile 

devices available in a family, which maximizes the spatiotemporal sensing coverage and 

achieves robust sensing accuracy across different homes. They can also shorten the system 

training period by incorporating one-time user input such as the typical time/frequency of 

family dinners. We have evaluated FamilyLog with extensive experiments involving 8 

families with children (one or two week recording in each family) and total 251 hours of 

sensor data collected over 77 days. Our results show the effectiveness of FamilyLog in 

family activity detection (with average 88.7% precision and 93.3% recall for meal detection, 

and 97.8% precision and 92.8% recall for the participant identification) across different 

families and home environments. The long-term, fine-grained family activity history 

provided by FamilyLog makes it possible to analyze communication patterns/anomalies and 

improve family life styles.

II. Related Work

The studies by American Academy of Pediatrics have shown that, healthy family meals are 

not only helpful in establishing good relationships among family members, but also critical 

for the proper development of children’s physical and mental health [5][9][7][14]. In order 
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to monitor family mealtime activities, several systems are designed to detect the usage of 

electrical appliances based on the electromagnetic interference and ambient sensors [26][15]

[18]. However, these systems can only detect the activities that involve substantial appliance 

usage. Recently, activity monitoring using mobile devices has received significant attention. 

Several systems are designed to detect food and drink intakes. For example, [19] presents the 

design of a fork with sensing abilities to help track and improve user’s eating behaviors. In 

[33], the authors propose an approach of profiling user’s gesture while eating using motion 

sensors on smartwatches. However, these systems are focused on tracking eating behavior of 

individuals, and are not suitable for detecting family mealtime activities, which may involve 

children without wearing any devices, and conversations among family members. Moreover, 

some mobile health systems are designed based on off-the-shelf smartphones to monitor 

human activities, such as sleep quality [16] or physical activities [28]. Several recent studies 

are focused on user experiences with mobile health systems such as privacy concerns [1] and 

sharing behaviors [27]. However, these efforts are not concerned with studying family meals 

or group activities.

Acoustic event recognition algorithms have been widely adopted in smartphone-based 

activity monitoring systems. Auditeur [23] is designed as a mobile-cloud service platform to 

allow client’s smartphone to recognize various sound events such as car honks or dog 

barking. SoundNet associates environmental sounds with words or concepts in natural 

languages to infer activities [22]. Recent work shows that the eating activity can also be 

detected by the acoustic features [34]. However, this work does not pinpoint main features 

for detecting family meals. It requires a large amount of data, and employs complex signal 

processing and machine learning methods, which raise burden of the implementation on 

mobile devices.

In order to detect the participants in the conversation, Crowd++ [35] counts the number of 

speakers using MFCC (Mel-frequency cepstral coefficient) [29] features. Row mean vector 

of spectrogram [20] is a simple but effective method for speaker recognition by comparing 

the Euclidean distance of the energy distributional features. However, voice recognition 

during a family meal is more challenging due to the presence of significant noise and 

requires new techniques.

III. Motivation and Requirements

A national survey shows that American families with children spend only 1 hour on family 

meal on a typical work day [24]. Moreover, it is shown that TV viewing during the meal 

significantly increases the energy intake [2]. Based on the datasets we collected from 8 

families, over 60% of the family meals are accompanied by concurrent TV viewing. In 

addition to the occurrence, duration, and frequency of family meals, the conversations 

during a family meal are also important as they constitute a significant portion of 

communications between family members during a day. Analyzing the conversation during a 

family meal is also important for culture studies [4]. Moreover, it is shown that, by 

reviewing detailed activity logs, people are motivated to modify their behaviors toward a 

healthy lifestyle [11][6][13][12].
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There has been a number of studies on personal activity recognition using wearables and 

smartphones [19] [33]. However, we argue that detecting the activity of individual family 

members separately is insufficient. First, the existing solutions typically require the mobile 

device (smartphone or wearable) to be carried by the user. As a result, they cannot be 

applied to detect many activities of young children who are usually not allowed to carry 

personal devices. Second, many people do not carry smartphone or wear watch constantly at 

home, making it difficult to monitor one’s activity continuously. Moreover, detecting each 

individual’s behavior is often unnecessary or significantly more challenging when she/he is 

participating in a group activity. For instance, detecting whether a particular family member 

is eating based on sound is more difficult when the family is having dinner together due to 

the higher level of ambient noise.

FamilyLog is designed to be an unobtrusive system that helps users keep track of their 

family mealtime activities. It employs the built-in accelerometer and microphone of 

smartphones and smartwatches to detect various information and activities related to a 

family meal. Specifically, FamilyLog is designed to meet the following requirements: 1) 

Since FamilyLog needs to operate in parallel with family mealtime activities. It must to be 

unobtrusive to use. It should minimize the burden on the user, e.g., without requiring the 

users to carry extra devices, and should not interfere with the users’ daily activities by any 

means. 2) FamilyLog needs to monitor the details of family meals, including their start/end 

time, participants, and possible TV viewing, in a robust fashion, i.e., across different users, 

smartphones, smartwatches and households. 3) Since family meals involve privacy sensitive 

activities such as family conversation, the privacy of the family needs to be strictly 

protected. For example, the system should process the collected sensor samples on the fly 

and only keep the results, instead of storing or transmitting any raw data, which may contain 

sensitive information such as contents of the conversations. The sensing algorithms we 

develop can accurately classify a number of important contextual features of activities such 

as arm gestures from wearables, eating sounds, environmental noise, conversations, etc. As a 

result, in the future, these algorithms can be adapted and used as building blocks to detect a 

wide range of family activities such as parties, family meetings, gaming etc.

IV. System Design

FamilyLog detects family meals by using the built-in sensors of mobile devices, namely 

microphone on smart-phone/tablet and both microphone and accelerometer on smartwatch1. 

However, FamilyLog is designed to leverage these sensing modalities in an opportunistic 

manner depending on the availability of mobile devices in a home. In particular, FamilyLog 

may achieve satisfactory sensing performance even with a single smartphone when it is 

placed in the proximity of family activities (see Section V). When multiple devices are 

available, FamilyLog runs separately on each individual device and fuses the detection 

results to achieve better performance and extended coverage.

As shown in Fig. 1, FamilyLog consists of four components: pre-processing, acoustic 
feature extraction, motion feature extraction, and HMM-based activity classification.

1Most off-the-shelf smartwatches ship with microphone for voice control and making calls.
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In pre-processing, sensors are sampled at certain rate and the samples are framed. A frame is 

discarded if it only contains noise which is indicated by low variance. Otherwise, each 

acoustic frame is processed to extract energy features using filters based on Mel-frequency 
cepstrum coefficients (MFCC). In the acoustic and motion feature extraction components, 

FamilyLog groups data frames (50ms by default) into a detection window (3min by default), 

and extracts a set of distinct features for each window. Specifically, FamilyLog extracts 

gesture-related motion features such as the average X-axis acceleration and changing rate, 

and acoustic features to detect the clattering sounds and the human voice.

To detect activities from extracted features, FamilyLog adopts a HMM-based (Hidden 
Markov Model) classifier. Compared with several commonly used classifiers like Support 
Vector Machine (SVM) that are only applicable to discrete event detection, HMM can 

naturally capture the temporal pattern of family activities by incorporating continuous sensor 

input. The HMM classifier is trained by a combination of short period of sensor data, e.g., a 

one-day family activities labeled by users, and some general knowledge of family meals 

which can be obtained from a one-time user input or a brief survey with simple questions 

such as “how much time does your weekday dinner usually take?”.

A. Pre-processing

The primary objective of pre-processing is to reduce unnecessary computation and prepare 

data for feature extraction. Specifically, it consists of the following three components.

First, FamilyLog reduces the unnecessary computation by discarding detection windows that 

likely contain only environmental noises (e.g., noise of appliances). Specifically, the noise 

detection is achieved by first calculating the root mean square (RMS) (i.e., the volume of 

signal) for each frame, and then computing the variance of RMS of all the frames within 

each window. A key observation is that a window with low RMS variance only contains 

ambient noise. Similarly, FamilyLog discards the motion data with low RMS variance, 

which typically indicates a stationary smartwatch not worn by the user.

Second, to increase computational efficiency, FamilyLog represents acoustic data with 

MFCC-based features, which will be used in later feature extraction. For each frame, 

FamilyLog first calculates its energy spectrum from 80Hz to 8kHz with the Fast Fourier 
Transform (FFT) [32]. Then the resulting spectrum is transformed into 21 energy channels 

by applying Mel Filters [21][25][30]. The energy of channel i will be represented as ei 

hereafter.

Third, to preserve power, FamilyLog turns on sensor sampling only when the device is 

home, which can be determined by the system location. Moreover, as an optional feature, 

FamilyLog can start the the sensor sampling of a new detection window probabilistically 

based on the percentage of historical noise frames in a predefined time window. We note that 

this strategy may turn off sampling falsely when noise appears in a burst within an event of 

interest. In the future, we will take into account the feedback from event detection 

component and reduce the sensor sampling when no activity is detected.
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B. Feature Extraction

FamilyLog identifies the occurrence of the family meals by several key characteristics, based 

on sounds and gestures associated with dining and whether the family members are currently 

in close proximity to one another. Specifically, we use the following features to characterize 

the family meals. The first feature is the clattering sound caused by clashes between 

tableware. This is because the clattering sound is the most distinctive acoustic characteristic 

of family dining activity, regardless of other dynamics, such as the type of food and variation 

of tableware. The second feature is the gesture of the users captured by smartwatches. When 

the user is holding food or using tableware, the arm of the user often exhibits a certain 

pattern of movements. The third feature is the human voice, i.e. the conversation between 

family members, which implies that the family members are near each other.

1) Clattering Sound—To infer family meal events, FamilyLog calculates the occurrences 

and frequency of clattering sound within a detection window. It looks for an energy peak 

from channel 12 to 16 (associated with frequency ranging from 1 − 4kHz) for each 50ms 
frame. Specifically, for each frame, it computes ēall, the average energy over all channels, 

and ē12−16, the average energy across channel 12 to 16. The feature associated with 

clattering sound is calculated as r = ē12−16/ēall. For example, Fig. 2 shows an example of 

clattering sound detection in a typical family meal scenario. Fig. 2(a) shows the energy on 

21 channels over time, and Fig. 2(b) shows the corresponding ē12−16 and ēall. We can see 

that one occurrence of clattering sound may result in several continuous clattering frames 

with higher ē12−16, even when the clattering sound and human voice overlapped around 1 

second. Therefore, comparing ē12−16 and ēall is a simple and effective way of detecting 

clattering sound in typical family meal scenarios. After obtaining r for each acoustic frame, 

FamilyLog calculates E[Nclattering] which represents the expectation of amount of clattering 

sound contained in a detection window. Specifically, E[Nclattering] is calculated as the sum of 

P(clattering|r) which is preset in the system and generated using the data collected from 5 

families. Fig. 3 shows an example of clattering sound detection based on the real data set 

collected in a home. We can see that all family meal windows contain large numbers of 

clattering frames. The clash of other objects such as keys and coins can also produce a 

similar sound. Different from clattering frames of dining activity, such false alarms are 

usually isolated and not likely to occur in a burst.

2) Arm Gesture—When smartwatch is available, FamilyLog also extracts motion-based 

features that characterizes dining behavior, which include the acceleration on the X-axis 

( ) and the changing rate of the acceleration (R̄c). The X-axis acceleration is sensitive to 

various arm movements, as its direction is always parallel to the user’s arm. Therefore, it can 

be used as a simple and effective feature for inferring arm gesture while avoiding the 

overhead of data processing on the other two dimensions. Specifically, FamilyLog samples 

the built-in motion sensor on smartwatch and calculates two features for each frame. The X-

axis acceleration is directly read from the accelerometer. The changing rate between two 

frames can be computed as the angle between two acceleration vectors from them. Since the 

acceleration is mostly corresponded to the gravity, the angle describes how much the 

orientation of the watch face is turned along with the user’s action. For a detection window, 

 is calculated as the average acceleration on X-axis for all frames, and R̄c is calculated 
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by the average changing rate of all neighboring frames. Fig. 4 shows three typical activities 

and the motion features. We can see that the arm gesture and the movements of wrist during 

meal show distinct distributions.

C. Conversation and TV Viewing Detection

1) Human Voice Identification—An important acoustic feature for the detection is the 

conversation, which identifies human speech, as well as the family members who participate 

in it. Among all the family communications, the family meal is typically accompanied by a 

considerable amount of conversations. The speaker recognition technique presented in [10] 

shows that pronunciation of vowels is a identical characteristic of human. However, 

maintaining a database for voice of each family member is costly for mobile devices. Here, 

row mean vector of spectrogram [20] provides an effective and efficient approach to 

recognize speakers by measuring Euclidean distance of energy distribution on frequency 

domain. Specifically, the family members are required to register their voice to FamilyLog 

by reading a short sentence. For each frame, FamilyLog compares the vector from MFCC-

based processing with the ones obtained during training, and calculates the probability that 

the frame contains voice of at least one family member by cosine similarity, represented as 

P(voice|E), where E is the energy distribution in the frame, as shown in Fig. 5. In a detection 

window, FamilyLog sums P(voice|E) for each frame to extract E[Nvoice], representing the 

expection of number of frames that contains family members’ voice.

2) Localization-based TV Viewing Detection—TV is a sound source with fixed 

location, whose volume usually stays within a limited range. However, the clattering sound 

and the conversation during the mealtime come from multiple sound sources. We can focus 

on detecting the number of sound sources to find the existence of the TV, and seperate TV 

sound from the clattering sound or the human voice. FamilyLog employs a novel approach 

based on Interaural Level Difference (ILD) [3] that fuses acoustic features captured by 

different devices (features are exchanged on cloud servers, local wifi or bluetooth 

connections) to determine the sound sources. In this section we only focus on the fusion 

algorithm for two devices although it can be extended to more generic scenarios. 

Specifically, the process of feature fusion consists of two steps: similarity check and sound 

source detection. In the first step, it figures out whether two devices are at home and near 

each other by examining the similarity between sound captured by two devices. We define 

the detection windows that cover the same period of time on two different devices as the 

binaural detection windows. The similarity between binaural detection windows A and B 
can be calculated as follows:

(1)

where vector E(X, i) is the energy distribution for frame i in detection window X. 

FamilyLog only proceeds to conduct sound source detection if C(A,B) is above a threshold, 

indicating the two devices are in proximity to one another. The sound source detection aims 
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to detect the number of sound sources in binaural detection windows. A key observation is 

that if all the acoustic signal originates from a single sound source, it is more likely caused 

by TV. In contrast, if the acoustic signal originates from multiple sound sources, it is more 

likely to be caused by human activities other than TV. The method we use to detect sound 

sources is based on acoustic localization by ILD. Specifically, if the acoustic signal is from a 

single source and captured by two receivers, it satisfies , where V1 and 

V2 are volumes received by receivers and d1 and d2 are distances between receivers and 

sound source, calculated by the RMS. This equation can be applied to compute the relative 

distances between the sound source and the devices. In indoor scenarios, ΔV may be 

impacted by various factors (e.g., echoes and obstacles), but its coefficient of variation is 

limited when d1 and d2 are fixed. To detect whether the acoustic signals come from the same 

source, we define Coefficient of Variation of Volume Ratio per Frame (CV (A,B)) in 

binaural detection windows A and B as:

(2)

Here, the volume of frame i in detection window X is represented by VX,i, μ(ΔV (A,B)) is 

the mean of volume ratios between A and B, and σ(ΔV (A,B)) is the standard deviation of 

volume ratios. CV (A,B) thus is the ratio of the standard deviation to the mean. The lower 

CV (A,B) is, the more likely the acoustic signals come from a single source. Fig. 6 shows an 

example of how to detect sound sources by volume ratio. In the first 20 seconds, phone B is 

carried by user from the dining table to the sofa. TV is turned on at the 30th second. During 

the 70th–75th second and the 140th–150th second, the subjects talk to each other. We can 

see that when the frames only contain TV sound, volume ratio is relatively stable. In 

contrast, as conversation involves multiple sound sources, the variance of the volume ratio is 

significantly increased.

By detecting the sound source with multiple devices, the accuracy of the detection of family 

meals can be improved in several challenging scenarios. Although TV programs that contain 

similar sound as family meal or conversation may be misclassified, the frames contain 

clattering sound and conversation still come from a single source, and they will be more 

likely from TV than family activities.

TV sound during the family meal can be separated from “foreground” sounds (clattering, 

conversation, etc.) by extracting low-energy frames, i.e. the frames that have a RMS less 

than the average RMS in a detection window. To detect whether TV is on during the family 

meal, we can check the volume of sound from all low-energy frames, and whether the 

acoustic signal is probably from a single sound source. If the TV is on, the continous sound 

from TV will rise the volume of low-energy frames, and CV (A,B) of all low-energy frames 

will have a relatively low value, indicating the sound comes from a single sound source with 

fixed location.
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D. HMM-based Classification

Similar to speech and gesture recognition, the family meal detection involves identifying a 

temporal pattern rather than detecting discrete events. We design the classifier of FamilyLog 

based on HMM, where we treat extracted features as observations, and the family event 

contained in each detection window as hidden state. Therefore, the primary goal of the our 

HMM-based classification is to recover the family events overtime using the features 

extracted from a sequence of detection windows.

Fig. 7 shows the HMM-based classifier for family meal as an example. We can see that in 

this case, the state is either “having meal” or “not having meal”, and the observations 

includes four features extracted from each detection window. The transition probabilities 

between two states are simply generated based on a simple survey conduced before using the 

system. The emission parameters associating states with observations are calculated using 

the one-day training data. Therefore, we formally define the our HMM-based classification 

as follows:

(3)

where X is a sequence of states; λ represents the transition probabilities Φ and emission 

parameters Θ of the HMM; O is a sequence of observations. The output of the classifier is a 

sequence of states that maximize the likelihood, which can be calculated by using the Viterbi 
algorithm.

1) Transition Probabilities—The set of transition probabilities Φ contains four entries 

{ϕ(1,1), ϕ(1,2), ϕ(2,1), ϕ(2,2)}. According to the definition of our HMM, when the activity is 

not occurring, we only need to know the probability of its occurrence in next detection 

window. On the other side, while the activity is currently occurring, we only need to know 

the probability of whether it continues in the next detection window. Therefore, two models 

are enough to describe all the transition probabilities, which are the probability distribution 

of one activity’s occurrence related to time/date, and the probability distribution of its 

duration.

The probability distributions can be estimated based on one-time user answers to questions 

like “What’s the typical frequency and duration of your weekday family meals?”. 

Alternatively, they can be derived from historical detection results. To improve the accuracy 

of such an approach, FamilyLog presents intuitive system UIs that allow users to rate 

previous detection results. The characteristics of family meal, including time, duration, and 

frequency are often highly dependent on the day of the week. Therefore, FamilyLog 

generates different models for the weekdays and weekends.

The transition probabilities of our HMM can be read directly on generated models. When 

applying the Viterbi algorithm, the transition probability from S2 to S1 is equal to the 

probability of the activity’s occurrence; the transition probability from S1 to S1 is equal to 

the probability of the activity’s continuance to the next 3 minutes. Because the transition 

probabilities are dependent on previous states (due to the influence of activity’s duration), 
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we need to adjust the structure of our HMM to ensure Viterbi algorithm runs properly. As 

shown in Fig. 8, all transition probabilities are independent of previous states, at the price of 

increased memory usage. In practice, we run Viterbi algorithm for 40 states in this HMM 

(i.e. 40 detection windows) to ensure that any activities within 2 hours can be captured.

2) Emission Parameters—The set of emission parameters Θ contains entries as θ(S,o), 

which describes the probability to observe the observation o in state S. The observation o 
within a detection window is represented as a vector of features, i.e. o =< o1, o2, o3, … >, 

where oi corresponds to a feature related to the activity. For the detection of the family 

meals, the features are shown in Table. I.

The HMM classifier is trained by a period of sensor data. Typically, at least a whole day is 

required to fully cover the communication of family. After training, we apply Gaussian KDE 

to calculate the PDF, which is represented as p(o|S), corresponding to the observations 

associated to each state. Therefore, the emission parameter is defined as θ(S,o) = p(o|S) for 

the HMM with multiple continuous observations [17].

V. Performance Evaluation

In order to evaluate the performance of FamilyLog, we have collected 77 days of data from 

37 subjects in 8 families (details shown in Table II). The procedure of the data collection has 

been approved by the Institutional Review Boards (IRB) at the Michigan State University. 

The period of data collection was one or two weeks for each family. We intentionally chose 

families with young children for this study because family routine analysis has important 

implications for children’s health. Our results also showed that small children often 

sometimes presented challenges to event detection due to the excessive noise they make at 

home.

We provided each family one or multiple devices. An app pre-installed on the devices 

continuously records audio and motion unless the device is taken out of home. The app runs 

automatically, but the subjects can manually start/end the recording on any device. The 

devices can be carried with the subjects or left somewhere in the house, depending on their 

habits. We also offer them the opportunity to review the recording and delete the part of 

recording that raises privacy concerns. We adopted two methods to obtain the ground truth, 

which include an interview with the family members immediately after data collection is 

finished, and listening to the recordings to manually label family activities.

A. Micro-scale Routine Analysis

To evaluate the performance of our HMM-based classifier, we compare our classification 

result with the result classified by the Support Vector Machine (SVM), which recognizes the 

family meals only based on features in individual detection windows rather than considering 

their temporal nature. The overall performance of FamilyLog and its comparison with SVM 

will be discussed later in SectionV-B.

Fig. 9 shows the detection results along with the ground truth of the data from 5 days in 

Family 4. We can see that the family usually has dinner around 7–8 pm for about an hour, 
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except for day 5, which is Friday, when they started dinner at around 8 pm for about 20 

minutes. Compared with the ground truth, we can see that FamilyLog is accurate in 

detecting most of the meals. In day 3 and 5, the SVM classifier yields a few 

misclassifications due to the interferences caused by TV viewing. However, FamilyLog’s 

HMM-based classifier is able to avoid such false negative errors. Furthermore, by taking into 

account the temporal nature of family routine activities, HMM is able to minimize the short 

false negative and false positive classification results.

B. Evaluation of Meal Detection

In this section, we investigate the overall performance of FamilyLog in detecting family 

meals. For each individual family, the HMM-based classifier is trained using the information 

from the survey and data labeled by the subjects collected in the first day. We use the 

precision and recall as the metrics for this evaluation. Specifically, the precision is defined as 

the ratio of the number of true-positive windows to the total number of windows. The recall 

is defined as the number of true-positive windows divided by the total number of windows 

detected as family meals. The true negatives are not considered, because most of the 

windows containing no activities are able to be detected, and they have been discarded. In 

addition, we also present the evaluation result after making certain relaxation (e.g., ±3min) 

on the start/end time. Note that our design objective will not be affected by minor errors in 

start/end time, as long as the the system is able to accurately identify the occurrences of the 

family meals.

The evaluation result of family meal detection is shown in Fig. 10. Our HMM-based 

classifier outperforms SVM by 6.82% on average in recall. This is primarily because HMM 

is more effective in correcting isolated false negatives. We can also observe that FamilyLog 

achieves an overall precision of 81.1%, with the highest being 91.1% for family 1 and lowest 

being 62% for family 4. We found that the two major causes of the relatively low precision 

in family 4 and 5 are the high pitch voice from children and music, which have similar 

acoustic features as clattering sound during meal. However, since these sounds usually have 

a short duration, FamilyLog is able to correct a considerable amount of the resulting false 

positives.

For the detection that is only based on the motion data from the smartwatch or the acoustic 

data, the accuracy is shown in Fig. 11 for Family 3, 4, and 6. For the Family 3 and 4, the 

precision is very low when only motion data is used. The reason is that the motion data for 

the eating action can be very similar to some activities like reading or writing, especially 

when the smartwatch is wear on the non-dominant hand. On the other side, the recall is 

relatively high, because most of the family meals are able to be correctly detected by the 

motion data. Moreover, the smartwatch in Family 6 is rarely worn when they are at home, 

and the detection based on the motion data is not always reliable. Generally, the features 

from the acoustic data contribute the major part of the detection, and the motion data can 

assist the detection in some special cases. For example, depending on the food, the clattering 

sound may be weak for a family meal, but the detection result can still be correct due to the 

conversation between the family members and the eating action.
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Fig. 12 shows a comparison of the accuracy of the detection by a single smartphone or all 

the available devices in a family. If FamilyLog only runs on a single device, the sound 

source detection will be unavailable. This happens in Family 6, where the sound from a TV 

program about cooking is wrongly detected as a meal without knowing the sound sources. 

Furthermore, during a family meal, if one device is left far away from the dining table but 

another device is near, it is possible that the meal can only be detected by one device. By 

combining the results from all the available devices, FamilyLog is less likely to miss a 

family meal than only relying on one of them.

Fig. 13 shows the detection accuracy of the occurrence of each family meal. We can see that 

FamilyLog rarely fails to detect an occurrence of family meals with the 9min-relaxation on 

the starting/ending time, achieving 88.7% precision and 93.3% recall on average. The 

detection error in each family meal’s duration is about 4 minutes on average.

C. Participant and TV Detection

The human voice serves as a clue for family meals, and is also unique feature of a 

participant. With the permissions from the Family 1–5, we listened to the raw acoustic data 

provided by them, and manually labeled the family members who have talked during each 

family meal. For each family, we only focus on the mother, the father, and one selected child 

aged between 5–12. We count the number of detection windows that Family Log can 

correctly detect all the participants, and calculate the precision and recall. Fig. 14(c) shows 

that, FamilyLog achieves high accuracy in participant detection across different families, 

with the average precision and recall being 97.8% and 92.8%, respectively. This means most 

of the detection windows yields correct results for participant detection. This also ensures a 

high accuracy for detecting all participants for each occurrence of the family meal.

Fig. 14(a) shows the participant identification result for each family member. One key 

observation is that the overall recognition accuracy of other family members are better than 

that of fathers. This is mainly due to the fact that father usually speaks with short sentences 

or only phases, which are more difficult to detect. Fig. 14(b) shows the proportion for each 

family member in overall conversation. We can see that father speaks less frequently that 

other family members, which is also consistent with the findings from social behavior 

studies [31]. Another observation is that the child from family 5 has a relatively low recall. 

This is mainly because he often speaks with different tones, thus the voice is difficult to 

identify using the signature extracted from his training data.

Table III shows the result of detection of TV viewing during the family meals. Some of the 

detections are unavailable, because only one device is used for the experiment, while the 

sound source detection requires at least two different devices. The accuracy is 91.8% 

precision and 89.5% recall. The errors are mainly caused by the noise, or the long distance 

between the TV and the devices. It can be seen that the TV is turned on during over 60% of 

the family meals in our experiment.
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VI. Conclusion

In this paper we present the design and implementation of FamilyLog – a practical system to 

log family mealtime activities using off-the-shelf smartwatches and smartphones. It uses the 

built-in accelerometers on the smartwatches and microphones of all mobile devices to detect 

family mealtime activities that are closely related to the family wellness, including 

occurrence and duration of meal, conversations, participants, and TV viewing. The design of 

FamilyLog addresses several challenges such as the significant interferences from various 

noises in the home. We carefully analyze the sensor data collected from real families and 

design the signal features for HMM-based activity classification, which are robust against 

various noises and can be computed efficiently on mobile devices. We have evaluated 

FamilyLog with extensive experiments involving 8 families with children (at least one-week 

recording in each family). Our results show that FamilyLog is effective in logging details of 

family meals across different families and home environments.
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Fig. 1. 
System overview
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Fig. 2. 
An example of clattering sound detection in a typical family meal scenario. (a) shows the 

energy on 21 channels over time, where clattering sound and human voice are marked with 

rectangles. (b) shows the comparison between ē12−16 and ēall for the same sound clip.
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Fig. 3. 
An example of family meal detection. Each bar represents the expected number of frames 

containing clattering sound in a detection window.
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Fig. 4. 
Examples of typical activities and related motion features. The left column shows a dining 

scenario ( , R̄c = 10.41°). The center column shows a TV viewing scenario 

( , R̄c = 0.85°). The right column shows a walking/standing scenario 

( , R̄c = 3.19°). The upper row shows the ground truth at some moments 

during these activities, and the arrows in these photos indicate the direction of X-axis. The 

acceleration on X-axis is shown for each photo. The center row shows the acceleration on X-

axis in each frame. The lower row shows the changing rate of acceleration in each frame.
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Fig. 5. 
An example of conversation detection during a typical dining scenario.
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Fig. 6. 
An example of TV viewing with conversation. (a) shows captured volume by two 

smartphones. (b) shows the volume ratio between corresponding frames.
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Fig. 7. 
The Hidden Markov Model of one family communication activity
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Fig. 8. 
The adjusted HMM structure. An activity is divided into multiple states as S1,k, indicating 

that the activity already lasts for k detection windows. Here S1,k can only transit to S1,k+1 or 

S2, corresponding to the cases where the activity continues to the next detection window or 

stops, respectively.
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Fig. 9. 
Detected family meals based on data collected from family 4 during 5 days.
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Fig. 10. 
Overall accuracy of family meal detection in detection windows. The average precision and 

recall of FamilyLog are 80.7% and 89.5%, respectively.
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Fig. 11. 
Accuracy of family meal detection using only motion or acoustic data.
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Fig. 12. 
Accuracy of family meal detection by a single phone or all the available devices.
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Fig. 13. 
Accuracy of detection for each occurrence of family meal by relaxing the start/end time by 

±3min and ±9min.
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Fig. 14. 
Evaluation of participant detection. (a) shows accuracy of speaker recognition. (b) shows 

each member’s overall proportion in family conversation. (c) shows accuracy of overall 

participant detection for each family. The average precision and recall are 97.8% and 92.8%, 

respectively.
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Bi et al. Page 30

TABLE I

Features for the family meal detection

Term Description

E[Nclattering] The expectation of number of frames containing clattering sound

E[Nvoice] The expectation of number of frames containing the family members’ voice

The average acceleration on X-axis

R̄c The changing rate of acceleration

CV (A,B) The coefficient of variation of volume ratio per frame in binaural detection windows A and B
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TABLE III

TV viewing during family meals

Total: 78
Detected

Not available
TV is on TV is off

True
TV is on 34 4

15
TV is off 3 22
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