2084

IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Internet of Things Meets Brain—Computer Interface:
A Unified Deep Learning Framework for Enabling
Human-Thing Cognitive Interactivity

Xiang Zhang

, Graduate Student Member, IEEE, Lina Yao

, Member, IEEE,

Shuai Zhang, Student Member, IEEE, Salil Kanhere, Senior Member, IEEE,
Michael Sheng, Member, IEEE, and Yunhao Liu, Fellow, IEEE

Abstract—A brain—computer interface (BCI) acquires brain
signals, analyzes, and translates them into commands that are
relayed to actuation devices for carrying out desired actions. With
the widespread connectivity of everyday devices realized by the
advent of the Internet of Things (IoT), BCI can empower indi-
viduals to directly control objects such as smart home appliances
or assistive robots, directly via their thoughts. However, realiza-
tion of this vision is faced with a number of challenges, most
importantly being the issue of accurately interpreting the intent
of the individual from the raw brain signals that are often of
low fidelity and subject to noise. Moreover, preprocessing brain
signals and the subsequent feature engineering are both time-
consuming and highly reliant on human domain expertise. To
address the aforementioned issues, in this paper, we propose
a unified deep learning-based framework that enables effective
human-thing cognitive interactivity in order to bridge individu-
als and IoT objects. We design a reinforcement learning-based
selective attention mechanism (SAM) to discover the distinctive
features from the input brain signals. In addition, we propose a
modified long short-term memory to distinguish the interdimen-
sional information forwarded from the SAM. To evaluate the
efficiency of the proposed framework, we conduct extensive real-
world experiments and demonstrate that our model outperforms
a number of competitive state-of-the-art baselines. Two practi-
cal real-time human-thing cognitive interaction applications are
presented to validate the feasibility of our approach.

Index Terms—Brain—computer interface (BCI), cognitive, deep
learning (DL), Internet of Things (IoT).

I. INTRODUCTION

T IS expected that by 2020 over 50 billion devices will be
Iconnected to the Internet. The proliferation of the Internet
of Things (IoT) is expected to improve efficiency and impact
various domains including home automation, manufacturing
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and industries, transportation, and healthcare [1]. Individuals
will have the opportunity to interact and control a wide range
of everyday objects through various means of interactions
including applications running on their smartphone or wear-
able devices, voice, and gestures. brain—computer interface
(BCD)!' is emerging as a novel alternative for supporting
interaction between IoT objects and individuals. BCI estab-
lishes a direct communication pathway between human brain
and an external device thus eliminating the need for typi-
cal information delivery methods [2]. Recent trends in BCI
research have witnessed the translation of human thinking
capabilities into physical actions, such as mind-controlled
wheelchairs and IoT-enabled appliances [3], [4]. These exam-
ples suggest that the BCI is going to be a major aiding
technology in human-thing interaction [5].

BCl-based cognitive interactivity offers several advantages.
One is the inherent privacy arising from the fact that brain
activity is invisible and thus impossible to observe and repli-
cate [6]. The other is the convenience and real-time nature of
the interaction, since the human only needs to think of the
interaction rather than undertake the corresponding physical
motions (e.g., speak, type, and gesture) [7].

However, the BCI-based human-thing cognitive interactiv-
ity faces several challenges. While the brain signals can be
measured using a number of technologies such as electroen-
cephalogram (EEG) [2], functional near-infrared spectroscopy
(fNIR) [8], and magnetoencephalography (MEG) [9], all of
these methods are susceptible to low fidelity and are also
easily influenced by environmental factors and sentiment
status (e.g., noise and concentration) [10]. In other words, the
brain signals generally have very low signal-to-noise ratios,
and inherently lack sufficient spatial or temporal resolution
and insight on activities of deep brain structures [5]. As
a result, while current cognitive recognition systems can
achieve about 70%-80% accuracy, this is not sufficient
to design practical systems. Second, data preprocessing,
parameter selection (e.g., filter type, filtering band, segment
window, and overlapping), and feature engineering (e.g.,
feature selection and extraction both in the time domain
and frequency domain) are all time-consuming and highly
dependent on human expertise in the domain [11].

I'The BCI mentioned in this paper refers to noninvasive BCL.
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Fig. 1. Schematic of cognitive IoT framework.

To address the aforementioned issues, in this paper, we pro-
pose a unified deep learning (DL) [12] framework for enabling
human-thing cognitive interactivity. As shown in Fig. 1, our
framework measures the user’s brain activity (such as EEG,
FNIRS, and MEG) through a specific brain signal collection
equipment. The raw brain signals are forwarded to the cloud
server via Internet access. The cloud server uses a person-
dependent pretrained DL model for analyzing the raw signals.
The analysis results interpreted signals could be used for actu-
ating functions in a wide range of IoT applicants, such as smart
city [13] (e.g., transportation control and agenda schedule),
smart hospital [14], [15] (e.g., emergency call and anomaly
mentoring), and smart home [16], [17] (e.g., appliances control
and assistive robot control).

The proposed unified DL framework aims to interpret the
subjects’ intent and decode it into the corresponding com-
mands which are discernible for the IoT devices. Based on our
previous study [5], [18], for each single brain signal sample,
the self-similarity is always higher than the cross-similarity,
which means that the intraintent cohesion of the samples
is stronger than the interintent cohesion. In this paper, we
propose a weighted average spatial long short-term memory
(WAS-LSTM) to exploit the latent correlation between signal
dimensions. The proposed end-to-end framework is capable of
modeling high-level, robust, and salient feature representations
hidden in the raw human brain signal streams and capturing
complex relationships within data. The main contributions of
this paper are highlighted as follows.

1) We propose a unified DL-based framework to interpret
individuals’ brain activity for enabling human-thing cog-
nitive interactivity. To our best knowledge, we are the
very first work that bridging BCI and IoT to investigate
end-to-end cognitive brain-to-thing interaction.

2) We apply deep reinforcement learning, with designed
reward, state, and action model, to automatically dis-
cover the most distinguishable features from the input
brain signals. The discovered features are forwarded to a
modified DL structure, in particular, the proposed WAS-
LSTM, to capture the cross-dimensional dependency in
order to recognize user’s intention.

3) We also present two operational prototypes of the
proposed framework: a brain typing system and a cogni-
tive controlled smart home service robot, which demon-
strate the efficacy and practicality of our approach.
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II. PROPOSED FRAMEWORK

In this section, we present the cognition detection frame-
work in detail. The subjects’ brain activity can be measured by
a number of methods like EEG, fMRI, and MEG. In this paper,
we exploit EEG due to its unique features, such as low-cost,
low-energy, privacy, and portability. The proposed framework
is depicted in Fig. 2. The main focus of the approach is to
exploit the latent dependency among different signal dimen-
sions. To this end, the proposed framework contains several
components: 1) the replicate and shuffle (RS) processing;
2) the selective attention learning; and 3) the sequential LSTM-
based classification. In the following, we will first discuss the
motivations of the proposed method and then introduce the
aforementioned components in details.

A. Motivation

How to exploit the latent relationship between EEG signal
dimensions is the main focus of the proposed approach. The
signals belonging to different cognitions are supposed to have
different interdimension dependent relationships which con-
tain rich and discriminative information. This information is
critical to improve the distinctive signal pattern discovery.

In practice, the EEG signal is often arranged as 1-D vec-
tor, the signal is less informative for the limited and fixed
element arrangement. The elements order and the number
of elements in each signal vector can affect the element
dependency. For example, the interdimension dependency in
{0,1,2,3,4} and {1, 2,3,4,0} are not reciprocal; similarly,
{0,1,2,3,4} and {0, 1, 1, 2, 3, 4} are not reciprocal. In many
real-world scenarios, the EEG data are concatenated following
the distribution of biomedical EEG channels. Unfortunately,
the practical channel sequence, with the fixed order and
number, may not be suitable for interdimension dependency
analysis. Therefore, we propose the following three techniques
to amend the drawback.

First, we RS the input EEG signal vector on dimension-
wise in order to provide as much latent dependency as possible
among feature dimensions (Section II-B).

Second, we introduce a focal zone as a selective attention
mechanism (SAM), where the optimal interdimension depen-
dency for each sample only depends on a small subset of
features. Here, the focal zone is optimized by deep reinforce-
ment learning which has been shown to achieve both good
performance and stability in policy learning (Section II-C).

Third, we propose the WAS-LSTM classifier by extracting
the distinctive interdimension dependency (Section II-D).

B. Data Replicate and Shuffle

Suppose the input EEG data can be denoted by X =
{(xi,yi),i = 1,2,...,1} where (X;,y;) denotes the 1-D EEG
signal, called one sample in this paper, and / denotes the num-
ber of samples. In each sample, the feature x; € RX contains
K elements and the corresponding ground truth y; € R is an
integer that denotes the sample’s category. Different categories
correspond to various brain activities. x; can be described as
a vector with K elements, x; = {x;x, k=1,2,...,K}.
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Fig. 2. Flowchart of the proposed framework. The focal zone X; is a selected fragment from x; to feed in the state transition and the reward model. In each
step 7, one action is selected by the state transition to update s; based on the agent’s feedback. The reward model evaluates the quality of the focal zone to the

reward ry. The dueling DQN is employed to find the optimal focal zone X*

x; which will be feed into the LSTM-based classifier to explore the interdimension

dependency and predict the sample’s label y;. FCL denotes fully connected layer. The state transition contains four actions: left shifting, right shifting, extend,
and condense. The dashed line indicates the focal zone before the action while the solid line indicates the position of the focal zone after the action.

To provide more potential interdimension spatial dependen-
cies, we propose a method called RS. RS is a two-step feature
transformation method which maps x; to a higher dimensional
space X, with more complete element combinations

xieRE 5 x eRE K > K.

In the first step (replicate), we replicate x; for h = K'%K + 1
times where % denotes remainder operation. Then we get a
new vector with length as & x K which is not less than K’; in
the second step (shuffle), we randomly shuffle the replicated
vector in the first step and intercept the first K’ element to
generate X,. Theoretically, compared to X;, the number and
order of elements in x;» are more diverse. For instance, set x; =
{1, 3, 4, 2}, in which the four elements are arranged in a fixed
order and limited combinations, it is difficult to mine the latent
pattern in Xx;; however, set the replicated and shuffled signal as
X; ={3,1,2,3,4,4, 1, 2}, the equal difference characteristic is
easy to be found in the fragment {1, 2, 3, 4} (the second to fifth
elements of x;). Therefore, a major challenge in this paper is
to discover the fragment with rich distinguishable information.
To solve this problem, we propose a attention-based selective
mechanism which is detailed introduced in Section II-C.

C. Selective Attention Mechanism

In the next process, we attempt to find the optimal depen-
dency which includes the most distinctive information. But K,
the length of x/, is too large and is computationally expen-
sive. To balance the length and the information content, we
introduce the attention mechanism [19] to emphasize the infor-
mative fragment in x; and denote the fragment by X;, which
is called focal zone. Suppose X; € RX and K denotes the
length of the focal zone. For simplicity, we continue to denote
the kth element by Xj; in the focal zone. To optimize the
focal zone, we employ deep reinforcement learning as the
optimization framework for its excellent performance in policy
optimization [20].

1) Overview: As shown in Fig. 2, the focal zone
optimization includes two key components: the environment
(including state transition and reward model), and the agent.
Three elements (the state s, the action a, and the reward r)
are exchanged in the interaction between the environment and
the agent. In the following we elaborate these three elements
which are crucial to our proposed deep reinforcement learning
model.

1) The state S = {s;,t = 0,1, ,T} € R? describes
the position of the focal zone, where ¢ denotes the
time stamp. In the training, so is initialized as sq
[(K'—K)/2, (K'+K)/2]. Since the focal zone is a shift-
ing fragment on 1-D x}, we design two parameters to
define the state: s, = {startl i endl ) Where start . and
end’, separately denote the start index and the end 1ndex
of the focal zone.?

The action A = {a,,t = 0,1,..., T} € R* describes
which the agent could choose to act on the environment.
In our case, we define four categories of actions for the
focal zone (as described in the state transition part in
Fig. 2): left shifting, right shifting, extend, and condense.
Here, at time stamp ¢, the state transition only choose
one action to implement following the agent’s policy
TS = (S, ay).

The reward R = {ry,t =0,1,..., T} € R is calculated
by the reward model, which will be detailed later. The
reward model ® : r, = ®(s;) receives the current state
and returns an evaluation as the reward.

We employ the dueling deep Q networks (DQNs) [21]
as the optimization policy m(s;, a;), which is enabled
to learn the state-value function efficiently. Dueling
DQN learns the Q value V(s;) and the advantage
function A(s;, a;) and combines them: Q(s;, a;) <
V(st), A(st, a;). The primary reason we employ a duel-
ing DQN to optimize the focal zone is that it updates all

2)

3)

4)

2For example, for a random x; =13,5,8,9,2,1,6,0], the state {startf
2, endf dxe = 5} is sufficient to determine the focal zone as [8, 9, 2, 1].
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the four Q values at every step while other policy only
updates one Q value at each step.

2) Reward Model: Next, we introduce the design of the
reward model, which is one important contribution of this
paper. The purpose of the reward model is to evaluate how
the current state impacts our final target which refers to the
classification performance in our case. Intuitively, the state
which can lead to the better classification performance should
have a higher reward: r; = F(s;). As a result, in the standard
reinforcement learning framework, the original reward model
regards the classification accuracy as the reward. F refers
to the WAS-LSTM. Note, WAS-LSTM focuses on the spa-
tial dependency between different dimensions at the same
time-point while the normal LSTM focuses on the tempo-
ral dependency between a sequence of samples collected at
different time-points. However, WAS-LSTM requires consid-
erable training time, which will dramatically increase the
optimization time of the whole algorithm. In this section,
we propose an alternative method to calculate the reward:
construct a new reward function r, = G(s;) which is posi-
tively related with r, = F(s;). Therefore, we can employ G
to replace F. Then, the task is changed to construct a suit-
able G which can evaluate the interdimension dependency in
the current state s; and feedback the corresponding reward ;.
We propose an alternative G composed by three components:
the autoregressive model [22] to exploit the interdimension
dependency in x;, the Silhouette Score [23] to evaluate the
similarity of the autoregressive coefficients, and the reward
function based on the silhouette score.

The autoregressive model [22] receives the focal zone X;
and specifies that how the last variable depends on its own
previous values. Then, to evaluate how rich information is
taken in the autoregressive coefficients, we employ silhouette
score [24] ss; to interpret the consistence of ¢. The silhouette
score measures how similar an object is to its own cluster
compared to other clusters and a high silhouette value indicates
that the object is well matched to its own cluster and poorly
matched to neighboring clusters. Specifically, in our case, the
higher silhouette score means that ¢ can be better clustered
and the focal zone X; is be easier classified. At last, based on
the ss; € [—1, 1], we design a reward function

ess[+1 K
1 P

The function contains two parts, the first part is a normalized
exponential function with the exponent ss; + 1 € [0, 1], which
encourages the reinforcement learning algorithm to search the
better s; w that leads to a higher ss;,. The motivation of the
exponential function is that: the reward growth rate is increas-
ing with the silhouette score’s increase.> The second part is a
penalty factor for the focal zone length to keep the bar shorter
and the B is the penalty coefficient.

In summary, the aim of focal zone optimization is to learn
the optimal focal zone X} which can lead to the maximum
reward. The optimization totally iterates N = n, * ng times
where n, and ng separately denote the number of episodes

ry =

3For example, for the same silhouette score increment 0.1, ss; : 0.9 — 1.0
can earn higher reward increment than ss; : 0.1 — 0.2.

2087

and steps [21]. e-greedy method [25] is employed in the state
transition.

D. Weighted Average Spatial LSTM Classifier

In this section, we propose WAS-LSTM classification for
two purposes. The first attempt is to capture the cross-
relationship among feature dimensions in the optimized focal
zone X;. The LSTM-based classifier is widely used for its
excellent sequential information extraction ability which is
approved in several research areas such as natural language
processing [26]. Compared to other commonly employed spa-
tial feature extraction methods, such as CNNs, LSTM less
dependent on the hyper-parameters setting. However, the tra-
ditional LSTM focuses on the temporal dependency among a
sequence of samples. Technically, the input data of traditional
LSTM is 3-D tensor shaped as [np, ns, K] where np and n;
denote the batch size and the number of temporal samples,
separately.

In this paper, we transpose the input data as [, n;, K] —
[np, K, ny] following the equation (AT);x = Ay, in which
form, each sample has shape [K, n;] and the WAS-LSTM pays
attention to each sample column and explores the latent depen-
dencies between the various elements in the same column.
WAS-LSTM aims to capture the dependency among various
dimensions at one temporal point, therefore, we set n; = 1.

The second advantage of WAS-LSTM is that it could sta-
bilize the performance of LSTM via moving average method.
In LSTM, each cell’s output contains the information before
it, however, the neural network’s convergence and stability are
fluctuated over different times of training. To enhance the con-
vergence and stability, we calculate the LSTM outputs O; by
averaging the weighted past two outputs instead of only the
final one (Fig. 2)

0i = w101y + w205

where w; and wp are the corresponding weights which
can adjust the importance proportion of O;_;) and Oi.
The weights can be automatically learned by the neural
network [27] or be manually set. In this paper, we simply man-
ually set w; = wo = 0.5 in order to save computing resources.
The predicted label is calculated by y; = L(X}) where L
denotes the LSTM algorithm. ¢>-norm (with parameter A) is
adopted as regularization to prevent overfitting. The sigmoid
activation function is used on hidden layers. The loss func-
tion is cross-entropy and is optimized by the AdamOptimizer
algorithm.

III. EXPERIMENTS

In this section, we design local real-world experiments
to evaluate the efficiency and effectiveness of the proposed
framework. First, the experimental setting is reported. Then,
we compare our model with competitive state-of-the-art
baselines and evaluate the performance in detail. Finally,
we investigate the impact of crucial factors such as the
framework latency and the reward model.

A. Experimental Setting

We conduct the EEG collection by using a portable and
easy-to-use commercialized Emotiv Epoc+ headset. The
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TABLE I
IMAGERY ACTION, LABEL, AND CORRESPONDING COMMANDS
IN CASE STUDIES

Imagery Action Label Typing Commands Robot Commands
Upward 0 Up Forward
Downward 1 Cancel Turn Left
Leftward 2 Left Grasp

Rightward 3 Right Loose

Middle Cycle 4 Nothing Nothing
Eye-closed 5 Confirm Stop/Start

headset contains 14 channels and the sampling rate is 128
Hz. The local dataset can be accessed from this link.* This
experiment is carried out using seven subjects (four males and
three females) aged from 23 to 26. During the experiment, the
subject wearing the Emotiv Epoc+> EEG collection headset,
faces the computer screen and focuses on the corresponding
hint which appears on the screen [shown in Fig. 3(a)]. EEG
signals are recorded when the subject is imaging certain
actions (without any physical action). The certain actions
contains: upward arrow, downward arrow, leftward arrow,
rightward arrow, and a cycle. Beyond that, the EEG signals
that the subject stays relaxation with eye closed are also
recorded. In total, there are six categories of EEG signals.
The imagery action associated with brain activities and the
corresponding labels used in this paper are listed in Table I.
In summary, this experiment contains 241920 samples
with 34560 samples for each subject. For each participant,
the dataset is divided into a training set and a testing set.
The training set contains 31 104 samples and the testing set
contains 3456 samples. The classification results are evaluated
by a number of metrics, including accuracy, precision, recall,
Fl-score, confusion matrix, receiver operating characteristic
(ROC) curve, and area under curve (AUC) score.

B. Overall Comparison and Analysis

In the training stage, based on the tuning experience, the
hyper-parameters setting are listed as follows. In the selective
attention learning: the order of autoregressive is 3; K = 128,
the dueling DQN has four layers and the node number in each
layer are: 2 (input layer), 32 (FCL), 4 (A(sy, ap)) + 1 (V(s;)),
and 4 (output). The decay parameter y = 0.8, n, = ny = 50,

4[Online]. Available: https://drive.google.com/open?id=0BOMuJb6Xx2PIM
OotakxuVHpkWkk

S[Online].  Available:
channel-mobile-eeg/

https://www.emotiv.com/product/emotiv-epoc-14-
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TABLE II
OVERALL COMPARISON WITH THE STATE-OF-THE-ART BASELINES.
DL DENOTES DEEP LEARNING

. Metrics

Baselines Methods Acc Pre Rec Flscore

SVM 0.2569  0.2737  0.2569  0.2577

RF 0.8041 0.8071 0.8041 0.8048

Non-DL KNN 0.8539  0.8563 0.8539 0.8544

AB 0.2506  0.2039  0.2506  0.1557

LDA 0.2595 0.2761  0.2595 0.2618

LSTM 0.2609  0.2447  0.2348  0.2354

DL GRU 0.2521  0.271 0.2696  0.2701

CNN 0.725 0.724 0.7237  0.7238

The state- 28] 0.8965 0.9011 0.8926  0.8968

of-the-art [29] 0.7894 0.7938 0.8013  0.7975

[30] 0.8891 0.8932 0.8765 0.8848

WAS-LSTM 0.9026 09125 0.9003 0.9064

SAM+WAS-GRU 09135 09188 0.9395 0.9378

Ours 0.9363 0.9394 0.9398 0.9396

N = 2,500, ¢ = 0.2, learning rate= 0.01, memory size =
2000, length penalty coefficient § = 0.1, and the minimum
length of focal zone is set as 10. In the DL classifier: the
node number in the input layer equals to the number of feature
dimensions, three hidden layers with 164 nodes, two layers of
LSTM cells (164 cells), and one output layer (six nodes). The
learning rate = 0.001, £>-norm coefficient A = 0.001, forget
bias = 0.3, batch size = 9, and iterate for 1000 iterations.

To demonstrate the efficiency of our approach, we compare
our model with several competitive state-of-the-art methods.

1) Hsu [28] extracts several potential features, including
amplitude modulation, spectral power and asymmetry
ratio, adaptive autoregressive model, and wavelet fuzzy
approximate entropy, followed by an SVM classifier, to
classify the binary motor imagery EEG signals.

2) Tabar and Halici [29] combine convolutional neural
networks (CNNs) and stacked Autoencoder (SAE) to
automatically classify EEG data.

3) Martis et al. [30] artificially extracted several nonlinear
features on different EEG frequency bands (including
delta, theta, lower alpha, upper alpha, lower beta, upper
beta, and lower gamma) and forward to SVM with radial
basis function kernel.

Table II shows the overall comparison between our approach
with nDL baselines, DL baselines, and the state-of-the-art
models. RF denotes random forest, AdaB denotes adaptive
boosting, and LDA denotes linear discriminant analysis. In
addition, the key parameters of the baselines are listed here:
linear SVM (C = 1), RF (n = 200), and KNN (k = 3).
In LSTM, ngeps = 5, another set is the same as the WAS-
LSTM classifier, along with the gated recurrent unit (GRU).
The CNN contains two stacked convolutional layers (both with
stride [1, 1], patch [2, 2], zero-padding, and the depth are four
and eight, separately), one pooling layer (stride [1, 2], zero-
padding) and one fully connected layer (164 nodes). Relu
activation function is employed in the CNN.

The observations in Table II show that our approach out-
performs all the baselines by achieving the highest accuracy
of 0.9363 on the six-class classification. In addition, our
model (SAM + WAS-LSTM) performs better than the solo
WAS-LSTM, which demonstrates that the SAM has a posi-
tive contribution to the classification. The confusion matrix,
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Fig. 4. Recognition results. (a) Confusion matrix. (b) ROC curves with AUC scores. (c) Latency.

ROC curves, and AUC scores of the proposed framework are
reported in Fig. 4. We can observe that the last class, rep-
resenting the eye-closed state, obtains the best performance
compared to other five classes. This demonstrates that the eye-
closed state is the easiest to be recognized, which is reasonable
while all the other classes are in eye-open state and are eas-
ier to be interrupted by the environmental factors. Moreover,
through the results comparison of SAM+WASGRU and our
model (SAM+WASLSTM) (Table II), we can observe that the
latter achieves higher performance which indicates (0.9363 >
0.9135) the LSTM slightly outperforms GRU in our scenarios.
The reason can be inferred is that LSTM can remember longer
sequences than GRU.

C. Impact of Key Factor

1) Latency: To design effective and real-world cognitive
interactive applications, both the accuracy and latency of intent
recognition are equally important. Subsequently, we compare
the latency of the proposed framework with several typical
state-of-the-art algorithms and the results are presented in
Fig. 4(c). It is observed that our approach has competitive
latency compared with other methods. The overall latency is
less than 1 s. The DL-based techniques in this paper do not
explicitly lead to extra latency.

2) Reward Model: Furthermore, we conduct extensive
experiments to demonstrate the efficiency of the proposed
reward model G. First, we measure a batch of data pairs of
the reward (represents the reward of G) and the WAS-LSTM
classifier accuracy (represents the reward of F). The rela-
tionship between the reward and the accuracy is shown in
Fig. 5. The figure illustrates that the accuracy has an approx-
imately linear relationship with the reward. The correlations
coefficient is 0.8258 (with p-value as 0.0115), which shows
that the accuracy and reward are highly positive related. As a
result, we can estimate arg maxg- F by arg maxg« G. Moreover,
another experiment is carried out to measure the single step
training time of two reward models G and F. The train-
ing times are marked as T1 and T2, respectively. Fig. 6
qualitatively shows that T2 is much higher than T1 (eight
states represent eight different focal zones). Quantitatively, the
sum of T1 over eight states is 35237.41 s while the sum of
T2 is 601.58 s. These results demonstrate that the proposed
approach, designing a G to approximate and estimate the F,
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Fig. 5. Relationship between the classifier accuracy and the reward. The

correlationship coefficient is 0.8258 while the p-value is 0.0115.

Fig. 6. Reward model training time in various states. T1 and T2 separately
denote the training time in reward model G and F.

saves 98.3% = 1 — 601.58/35237.41 training time in focal
zone optimization.

IV. CASE STUDY

Inspired by the high accuracy and low latency of our
proposed framework for human intent recognition, we pro-
ceed to develop two real-world cognitive IoT prototypes: 1) a
brain typing system and 2) mind-controlled assistive robot for
the smart home.

A. Brain Typing System

Due to the high intent recognition accuracy, we develop an
online brain typing system to convert user’s thoughts to texts.
The video demo clip can be found at the given link.® The
brain typing system [Fig. 7(a)] consists of two components:
the pretrained deep learning model and the online BCI system.
The pretrained DL model, which is trained offline, aims to
accurately recognize the user’s typing intent in real time. The
online system contains five components: 1) the EEG headset;
2) the client 1 (data collector); 3) the server; 4) the client 2
(typing command receiver); and 5) the typing interface. The
user wears the Emotiv EPOCH headset which collects EEG
signals and sends the data to client 1 through a Bluetooth

6[Online]. Available: https://youtu.be/Dc0StUPq6 1k
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connection. The raw EEG signals are transported to the server
through a TCP connection.

Specifically, the typing interface [up right corner in
Fig. 7(a)] can be divided into three levels: 1) the initial
interface; 2) the subinterface; and 3) the bottom interface. All
the interfaces have similar structure: three character blocks
(separately distributed in left, up, and down directions), a dis-
play block, and a cancel button. The display block shows the
typed output and the cancel button is used to cancel the last
operation. The typing system in total includes 27 = 3 % 9
characters (26 English alphabets and the space bar) and all
of them are separated into three character blocks (each block
contains nine characters) in the initial interface. Overall, there
are three alternative selections and each selection will lead to
a specific subinterface which contains nine characters. Again,
the 9 = 33 characters are divided into three character blocks
and each of them is connected to a bottom interface. In the
bottom interface, each block represents only one character.

In the brain typing system, there are five commands to con-
trol the interface: “left,” “up,” “right,” “cancel,” and “confirm.”
Each command corresponds to a specific motor imagery EEG
category (as shown in Table I). Since the user can hardly con-
centrate for a long time (usually, less than 10 s), the brain
activity may represent none of the valid commands sometimes.
Nevertheless, the proposed DL framework cannot distinguish
the invalid brain activity, we leave one specific brain category
to represent the invalid signal. If the individual’s brain sig-
nal is not in any of the five valid categories, it is classified
as the invalid category and the brain typing system will do
nothing under this situation.” Moreover, based on the exper-
iments results in Section III-B, the eye-closed state has the
highest precision and accuracy, therefore, we select this state
as the confirmation command for the reason that “confirma-
tion” is the most crucial command in typing system. To type
every single character, the interface is supposed to accept
six commands. Consider typing the letter “I” as an exam-
ple. The sequence of commands to be entered is as follows:
left (choose the left block with characters A ~ I), confirm,
right (choose the right block with characters G ~ I), confirm,
right (choose the right block with characters /), confirm.

9 <«

7Similarly, in the cognitive robot case, the robot will remain the previous
state under the invalid command.
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Human-thing cognitive applications. (a) Brain typing system. (b) Cognitive robot in IoT scenario.

In our practical deployment, the sampling rate of Emotiv
EPOC+ headset is set as 128 Hz, which means the server
can receive 128 EEG recordings each second. Since the brain-
wave signal varies rapidly and is very easy to be affected
by noises, the EEG data stream is sent to server every half
second, which means that the server receives 64 EEG sam-
ples each time. The 64 EEG samples are classified by the DL
framework and generate 64 categories of intents. we calculate
the mode of 64 intents and regard the mode as the final intent
decision. Furthermore, to achieve steadiness and reliability, the
server sends the command to client 2 only if three consecu-
tive decisions remain consistent. After the command is sent,
the command list will be reset and the system will wait until
the next three consistent decisions are made.

B. Cognitive Robot

Another important application for BCl-inspired IoT is
extending the orientation of smart homes by integrating the
subject’s intent and the real-world IoT objects to effectively
control things of interest.

To demonstrate the feasibility of the proposed framework,
we report the second use case as implementing cognitive inter-
activity in an IoT-based smart home system. The IoT-based
smart home is equipped with sensors, wherein IR sensors,
ambient sound, heat, as well as contact sensors are mounted
on furniture and used in the home environment in a nonintru-
sive manner. In our case, within the smart home environment
which is perceived by the embedded sensor-networks, a simu-
lated robot is cognitively navigated to perform a routine task.
In the specific scenario, the robot, learns user’s intent from
EEG recordings via the proposed framework, to take the IoT
object (e.g., a can of beverage) from a table in the kitchen
and put it in a table in the living room. The desired object
is aggregate with RFID tag which helps to identify the loca-
tion. The IoT scenario is depicted in Fig. 7(b) and the demo
can be found at here.® The user’s intent is carried in the EEG
recordings which are forwarded to the DL-based framework
for interpretation. The recognized intent is send to sensor hive
through WLAN to navigate the robot to get the desired object.
Starting from the table near the kitchen, the PR2 robot receives
action commands (as shown in Table I) and walks forward

8[Online]. Available: https://youtu.be/VZYX1095Vke
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until the specific position with the auxiliary of RFID tag. Then,
the robot grasps the object, turns back and walks along the path
to the table in living room and unlooses hands to put the bev-
erage on the table. The simulation result shows that the robot
can 100% precisely grasp and unloose object according to the
path planned in the subject’s mind. The simulation platform is
in Gazebo toolbox and the robot controlling program is pow-
ered by robot operating system. This case randomly selects
some EEG raw data from Subject 1 dataset as simulation
inputs.

V. DISCUSSION

Here, we present several open challenges.

1) The experiment only contains seven subjects limited
by the practical conditions, a larger and more diverse
dataset is necessary to illustrate the effects of the
proposed model.

2) The SAM component with focal zone is designed to
automatically explore the latent dimension sequence of
the input EEG data, nevertheless, the employment of
SAM increases the training time resulted from more
iterations of the LSTM cell.

3) Most importantly, the RS stage shuffles the order
and replicate the number of input dimensions to dis-
cover the optimal order in order to the best performance,
but the optimal order can not be guaranteed to appear
after the RS, thus try more times if the classification
result is unsatisfactory.

4) The WAS-LSTM exploits the spatial information among
EEG channels, thus a number of channels are required
to provide enough information.

VI. CONCLUSION

We propose a unified DL framework to bridge BCI and
IoT in order to enable cognitive interactivity. We propose
WAS-LSTM to extract interdimension dependency among the
input signal of the human brain activities which are selected
by the SAM. We conduct real-world experiments to evaluate
the proposed framework and the results demonstrate that our
model outperforms the state-of-the-art baselines. Furthermore,
our experience in developing two case studies, namely the
brain typing system and the cognitive robot, are reported in
this paper. These case studies validate the feasibility of the
proposed framework.
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