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Abstract. In many real-world systems with multiple sources of data,
data are often missing in a block-wise way. For example, in the diagno-
sis of Alzheimer’s disease, doctors may collect patients data from MRI
images, PET images and CSF tests, while some patients may have done
the MRI scan and the PET scan only, while other patients may have
done the MRI scan and the CSF test only. Despite various data impu-
tation technologies exist, in general, they neglect the correlation among
multi-sources of data and thus may lead to sub-optimal performances.
In this paper, we propose a model called regularized multi-source matrix
factorization (RMSMF) to alleviate this problem. Specifically, to model
the correlation among data sources, RMSMF firstly uses non-negative
matrix factorization to factorize the observed multi-source data into the
product of subject factors and feature factors. In this process, we assume
different subjects from the same data source share the same feature fac-
tors. Furthermore, similarity constraints are forced on different subject
factors by assuming for the same subject, the subject factors are simi-
lar among all sources. Moreover, self-paced learning with soft weighting
strategy is applied to reduce the negative influence of noise data and to
further enhance the performance of RMSMF. We apply our model on the
diagnosis of the Alzheimer’s disease. Experimental results on the ADNI
data set have demonstrated its effectiveness.

Keywords: Multi-source neuroimage data · Matrix factorization ·
Alzheimer’s disease · Self-paced learning

1 Introduction

In many real-world systems with multiple sources of data, data are often missing
in a block-wise way. For example, in the diagnosis in Alzheimer’s disease, doctors
may collect patients data from MRI images, PET images and CSF tests. Accord-
ing to the study in Alzheimer’s Disease Neuroimaging Initiative (ADNI)1, over
1 http://adni.loni.usc.edu/.
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half of the subjects do not have CSF measurement, another half of the subjects’
PET scan are absent [20]. The reasons of data missing are diverse, including
financial factors, data quality problems, subject’s personal privacy and data lost
during collection. An illustration can be found in Fig. 1. Here the row means sub-
jects and the column means features. Three different colours represent three data
source respectively: CSF, MRI, and PET. The blank space means the subjects’
corresponding data source is missing.

In the past few decades, missing data completion methods have been widely
used in many scientific research areas. For instances, in biological researches,
missing value estimation methods such as weighted K-nearest neighbors (KNN)
and singular value decomposition (SVD) are carried out to obtain a complete
matrix of gene expression microarrays for further analysis [17]. In recommender
systems, matrix factorization technologies are used to generate product recom-
mendations which recommend new items to strange users [9]. The main idea of
SVD method is that it assumes the real value matrix can be described by the
inner product of the following three matrices: a diagonal matrix composed by a
certain number of original matrix’s largest singular values and two orthogonal
matrices corresponding to its right and left singular vectors. To approximate the
original matrix, firstly, row average should be assigned to missing values, then
use expectation maximization method to obtain estimation [17]. The paradigm
of KNN method is to select the k closest values and compute their weighted
average as the estimation of the specific missing value [17]. Matrix factorization
methods typically map subject and data source to a latent space demonstrated
by factors with a certain dimension, then use the inner product of those two
latent space vectors as the reconstructed matrix [1].

In order to cope with the problem of data block-wise missing, Yuan et al.
proposed an incomplete Multi-Source Feature learning method (iMSF) which
uses a multi-task method to avoid the direct missing data completion that may

Fig. 1. Data reconstruction by MSMF. Here Xij denotes the i-th data source/view
of the j-th group of patients, Vi denotes the factor matrix of the i-th view, and Uij

denotes the patient factors of the j-th group of patients under the i-th view.
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involve unnecessary noise [20]. After that, Xiang et al. proposed the incomplete
source-feature selection method (iSFS) which uses the same strategy to group
different data sources but with data overlap in different combinations. Upon
different combinations of data source, the iSFS framework learns independent
models which are integrated by regularization term [18].

Nonetheless, the original data used in iMSF may contain some noise which
is inevitable during data collection process. Inspired by the data fusion idea,
we propose to use matrix factorization method to reconstruct data and reduce
noise appropriately. In addition, iMSF treats all the subjects equally, which
clearly does not take subject diversity into consideration. Therefore, we introduce
the self-paced learning (SPL) method [10] with soft weighting to do sample re-
weighting. The SPL framework can simultaneously select relatively easy samples
and learn a new parameter vector at each iteration. Furthermore, instead of
hard weighting technique used in the original SPL model [10,16], soft weighting
strategy is used to re-weight subjects using real values rather than just 0 and 1
[4,5,15].

This paper is organized as the following. In Sect. 2, we provide a brief overview
to the Alzheimer’s disease. In Sect. 3, we present the multi-source matrix factor-
ization approach, followed by the self-paced version in Sect. 4. Finally, we present
the real-world study in AD followed by the conclusion in Sect. 6.

2 Related Work on AD Study

AD is a gradually progressing brain disorder, whose exact cause remains undis-
covered. The typical symptoms of AD include memory loss, personality and
behavior changes, and cognition impairment. According to the National Insti-
tute on Aging (NIA), the morbidity of people over 65 years old increases along
with aging, which results in nearly half of over age 85 people’s illness. What’s
worse, an AD patient can only live eight years after the occurrence of symptoms
in average [2].

Mild Cognitive Impairment (MCI) also causes a decline in cognitive ability
and memory loss [3]. Although such degeneracy is not serious enough to influence
daily activities, a person with MCI might develop into AD within a few years.
Consequently, to distinguish between AD and MCI patients is very important for
physicians to make correct decisions of medical treatments. Despite the accurate
cause of AD has not been discovered, there are some anomalies of AD patients
worth noticing.

Firstly, researchers found that an excess of two abnormal structures in the
brain related to AD: plaques and tangles. Their main components beta-amyloid
and tau proteins can be detected by cerebrospinal fluid.

Secondly, advanced neuroimaging technologies, including Magnetic Reso-
nance Imaging (MRI) and Positron-Emission Tomography (PET) are able to
detect patients’s brain structure and function deviations. Specifically, MRI mea-
sures brain structures changes related to AD, such as the reduction in hippocam-
pal volumes, the enlargement of the temporal horns and the third and lateral
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ventricles [6,7]. The PET scanning is able to examine brain functions including
cerebral blood flow, metabolism, and receptor binding. Besides, these informa-
tion collected from different sources including brain structures, brain functions
and protein level variations provide researchers diversified views in classification
among the AD patients, MCI patients and normal controls (NC).

Thirdly, the association study between genetic variations and brain imaging
biomarks has been conducted to reveal the genetic influences of some specific
genes to regions of brains [19,22,23].

3 Regularized Multi-source Matrix Factorization

The multi-source AD data provides multiple views to analyze a patient’s con-
dition, and the shared information is of great benefit for disease diagnosis. To
deal with the data block-wise missing problem, iMSF method first groups the
block-wise missing data into different tasks by subjects’ existence of different
data sources. In Fig. 1, the three different data sources can be divided into seven
different tasks, each task has one of the following data sources combinations: (1)
CSF, (2) MRI, (3) CSF and MRI, (4) PET, (5) CSF and PET, (6) MRI and
PET, (7) CSF, MRI and PET. Then iMSF uses multi-task method and the reg-
ularization term l21-norm to achieve the goal of information sharing. However,
data noise is inevitable during data collection, which may lead to data distor-
tion and inaccurate results. For this reason, we propose the multi-source matrix
factorization method to do data fusion and reduce the noise to some extent.

Assuming the number of data sources is S, each data source has Bs blocks,
s = 1, 2, ..., S. We suggest that every block of same data source should have
more strong constraints. According to the Non-negative Matrix Factorization
(NMF) method [11,12], a non-negative matrix X can be approximated by the
inner product of two non-negative matrices U and V :

X ≈ UV, (1)

where X ∈ Rn×m, U ∈ Rn×r, V ∈ Rr×m.
If every data block Xsi (the s-th data source’s i-th block) in the matrix

(Fig. 1) can be approximated by two non-negative matrices: Usi, Vsi, that is,
Xsi = UsiVsi, for s = 1, ..., S, i = 1, ..., Bs, it is quite obvious that we can use Usi

and Vsi to describe the subject factors and feature factors of Xsi respectively. To
force more strong constraint on share information, we assume that the same data
source’s different blocks’ V matrices are exactly identical. That is, for every data
block belongs to the s-th data source shares the same Vs. Under this assumption,
we propose to do multi-source matrix factorization as follows:

min
U,V

S∑

s=1

Bs∑

i=1

||Xsi − UsiVs||2F . (2)

In order to simplify our calculating process, we update Usi, Vs by the following
equations:

U t+1
si(k,l) = U t

si(k,l)

(XsiV
T
s )(k,l)

(U t
siVsV T

s )(k,l)
, (3)
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V t+1
s(l,μ) = V t

s(l,μ)

(UT
siXsi)(l,μ)

(UT
siUsiV t

s )(l,μ)
. (4)

where X ∈ Rn×m, U ∈ Rn×r, V ∈ Rr×m, the subscript (k, l) means the k-th
row and l-th column of Usi, (l, μ) means the l-th row and μ-th column of Vs.

The pseudo-code of MSMF is shown in Algorithm1. In our experiments, ε is
set to 10−3 and MaxIter (the maximum number of iterations) is set to 20000.
The process of MSMF is demonstrated in Fig. 1 where every block in the matrix
is approximated by the method.

Algorithm 1. Multi-source matrix factorization (MSMF)
Require: X ≥ 0
Ensure: Usi, Vs, for i = 1, 2, ..., Bs, s = 1, 2, ..., S

Initialize Usi ≥ 0, Vs ≥ 0, for i = 1, 2, ..., Bs, s = 1, 2, ..., S
while obj ≥ ε or iter ≤ MaxIter do

for s = 1 : S do
for i = 1 : Bs do

Fix Vs, update Usi according to (3)
Fix Usi, update Vs according to (4)

end for
end for

end while

Furthermore, we introduce similarity constraints between the same subjects’
different data sources. As illustrated in Fig. 1, we assume that U12 is similar
to U22, U13 is similar to U32, and so on. The assumption is based on the fact
that X12 and X22 are two different data sources of the same group of patients.
Therefore, our objective function becomes:

min
U,V

S∑

s=1

Bs∑

i=1

||Xsi − UsiVs||2F , (5)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U12 ∼ U22,
U13 ∼ U32,
U23 ∼ U33,
U14 ∼ U24,
U24 ∼ U34,
Usi ≥ 0, Vs ≥ 0.

The symbol “∼” means the two matrices are similar. For clarification, the defini-
tion of similar is not the same as the similar matrix in mathematics, and actually,
it is measured by the Frobenius norm of matrices. Assume that the number of
similarity constraints is C, and the similar matrix of U

(1)
j is U

(2)
j , for instance,
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in the constraint U12 ∼ U22, U
(1)
j = U12, U

(2)
j = U22. As a result, the regularized

multi-source matrix factorization (RMSMF) can be formulated as follows:

min
U,V

S∑

s=1

Bs∑

i=1

||Xsi − UsiVs||2F + λ

C∑

j=1

||U (1)
j − U

(2)
j ||2F ,

s.t. Usi ≥ 0, Vs ≥ 0. (6)

where the parameter λ controls the significance of similarity constraints.
Similarly, we can compute the update rules for Usi, Vs as follows [11,12]:

U
(1)t+1
si(k,l) = U

(1)t
si(k,l)

(XsiV
T
s + λU

(2)
si )(k,l)

(U (1)t
si VsV T

s + λU
(1)t
si )(k,l)

, (7)

V t+1
s(l,μ) = V t

s(l,μ)

(UT
siXsi)(l,μ)

(UT
siUsiV t

s )(l,μ)
. (8)

4 Self-paced Classification

In order to demonstrate the advantage of our reconstructed data, we propose
to use the identical classification model on both the reconstructed data and the
observed data. As we mentioned before, iMSF uses a multi-task method to learn
a model parameter. First of all, we should briefly go through the structure of
iMSF. Assuming that the data set is divided into m tasks, the i-th task with
totally Ni subjects is described as: T i = {xi

j , y
i
j}, j = 1...Ni, in which {xi

j , y
i
j} is

the corresponding feature matrix and label of the j-th subject in i-th task. The
iMSF framework is formulated as follows:

min
β

1
m

m∑

i=1

1
Ni

Ni∑

j=1

L(xi
j , y

i
j , β

i) + λ

S∑

s=1

ps∑

k=1

‖βI(s,k)‖2. (9)

where L(·) is the loss function and logistic loss is employed in this study, βi

is the model parameter of i-th task. The second part of this formulation is
the l2,1-norm regularization [21]. S is the total number of data source and Ps

is the total number of s-th data source’s feature dimension. I(s, k) is a index
function, βI(s,k) indicates the parameter of k-th feature in s-th data source.
Please refer to [13,14,20] for more details of iMSF model and the optimization
method Accelerated Gradient Descent (AGD).

As we mentioned above, iMSF treats all the subjects fairly. But, the data of
some subjects might be inaccurate or with noise. This can negatively affect its
performance. In this work, we use SPL with soft weighing strategy to address
this issue. Concretely, according to [10], the original SPL framework with hard
weighting simply assigns 0 or 1 to a subject which means the subject is not
selected or selected. In order to treat different subjects accordingly, we propose
to use the SPL framework with soft weighting [4] to assign real-valued weights
to different subjects. In this paper, we adopt the linear soft weighting.
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Algorithm 2. Self-paced learning framework with soft weighting strategy
Require: initial value: βi, Ki, for i = 1, ..., m, learning rate μ
Ensure: βi, for i = 1, 2, ..., m

Initialize Ki ← Ki
0, for i = 1, 2, ..., m

while ∃vi
j = 0, ∀i, j do

Fix vi
j , update βi, using AGD

Fix βi, compute loss Li
j , update vi

j by (11)

Ki ← Ki

µ
, for i = 1, ..., m

end while

Linear Soft Weighting:

min
β,v

1
m

m∑

i=1

1
Ni

Ni∑

j=1

vi
jL(xi

j , y
i
j , β

i)+λ

S∑

s=1

Ps∑

k=1

‖βI(s,k)‖2+
m∑

i=1

Ki(
1
2
‖vi‖21−

Ni∑

j=1

vi
j),

(10)
where Ki is the SPL parameter for the i-th task. For simplicity, we use Li

j to
denote L(xi

j , y
i
j , β

i). Thus, for fixed βi,

vi
j =

{
− Li

j

Ki + 1, Li
j < Ki,

0, otherwise.
(11)

This solution means that in a specific task i, if a subject j’s loss is less than the
threshold Ki, this subject is defined to be easy and assigned a real-valued weight,
otherwise, it will be neglected until next iteration. As Ki grows, more and more
subjects’ loss would be lower than the threshold Ki, so that more subjects will
be selected to train a model with better performance. Apparently, according to
the linear soft weighting strategy, the noisy subjects which are typically with
large loss will be assigned small weight. In this way, the negative influence of
noisy data can be reduced to some extent. The pseudo-code of self-paced learning
framework is described in Algorithm 2.

5 Experimental Results

In this section, we are going to present the data used in the experiments to
validate our algorithm and give convincing suggestions to AD diagnosis. More-
over, adequate experiments are conducted to evaluate the performances of our
algorithm and the comparing methods.

5.1 Data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database provides the
data used in our experiments [20]. This data set is consisted of 742 subjects
with three data sources: MRI, PET, and CSF. The labels of subjects are diag-
nosed by physicians seven times within four years by three types: AD, MCI and
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Table 1. Description of the ADNI data set

Data source #features #AD subject #Non subject #Con subject #NC subject

CSF 3 103 122 85 105

MRI 305 392 189 142 178

PET 116 77 105 70 75

NC (some diagnosis results are missing). According to the change over diagno-
sis results, we group all the subjects into four different classes: AD, Converter
(Con), Non-converter (Non), and Normal Control (NC). The labels of AD and
NC are quite explicit. Those who are firstly diagnosed as MCI and then gradu-
ally transform into AD are defined as converters, while those subjects are defined
as non-converters if they remain MCI till the diagnosis period ends. According
to this definition, the detailed description of the data set is given by Table 1.
For classification and practical usages, we focus on subjects that are difficult
to distinguish: AD vs Non, Con vs Non, and Non vs NC. We believe that the
challenging subject classification can provide more valuable suggestions on clin-
ical diagnosis and help physicians to establish distinctive therapeutic schedule
on different patients as soon as possible and avoid delaying optimal treatment
period.

5.2 Results and Analysis

In order to demonstrate the effectiveness of our methods, we use two base-
line methods: the original iMSF method and the traditional matrix completion
method SVD. The comparing methods used in the experiments are stated as
follows.

– iMSF-obs [20,24]: as mentioned above, iMSF is a novel multi-task method
that adopts an innovative task construct method to avoid incomplete data.
We are going to perform the original iMSF model on observed data.

– SVD [8]: singular value decomposition (SVD) is presented as an representa-
tive of traditional matrix completion method. SVD is a low rank approxima-
tion matrix completion method. We firstly initialize the missing data entries
as zeros and then apply SVD to obtain a complete matrix.

– MSMF: we firstly use the proposed MSMF method to reconstruct data and
then perform iMSF on the reconstructed data.

– MSMF-S: in this method, we first use MSMF to reconstruct data, then use
iMSF model with SPL soft weighting strategy to do classification.

– RMSMF: this method is similar to MSMF method except that the RMSMF
method is used to reconstruct data.

– RMSMF-S: this method is similar to MSMF-S method except that the
RMSMF method is used to reconstruct data.

The experiments of all methods adopt a 10-fold cross validation scheme. The
searching range of λ is set to [0.01 0.03 0.1 0.3 1] for all iMSF relevant methods.
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Table 2. AUC results of the comparing methods

Method iMSF-obs SVD MSMF MSMF-S RMSMF RMSMF-S

AD vs Non 0.8052 0.7152 0.8118 0.8287 0.8192 0.8314

Con vs Non 0.7253 0.6211 0.7279 0.7415 0.7319 0.7323

Non vs NC 0.6453 0.6422 0.6765 0.6818 0.6503 0.6503

The initial SPL parameter K is set by the median of initial loss and the learning
pace is set by limiting the iteration times within 5. The AUC results of all the
aforementioned methods are presented in Table 2.

As reported by Table 2, it can be observed that the iMSF method defeats
the SVD method, which suggests that the simple matrix completion has poor
performance dealing with data block-wise missing. Accordingly, to compare our
method with the iMSF method is fairly reasonable. Specifically, we can find that
MSMF always outperforms iMSF-obs in the three classification tasks, indicating
the effectiveness of reconstructed data. Moreover, RMSMF performs better than
MSMF in the classifications of AD vs Non, Con vs Non. Hence, we can draw a
conclusion that the MSMF model with constraints do improve the performance
of MSMF data integration to some extent. In the results of SPL soft weighting
models, on one hand, the increments between MSMF, RMSMF and MSMF-
S, RMSMF-S are stable, which means that the soft weighting strategy have
reduced the influence of the noisy data in the reconstructed MSMF and RMSMF
data effectively. On the other hand, although MSMF-S have come out with the
best auc results in two classifications, RMSMF-S still performed excellent in the
classification of AD vs Non, which is of great help in diagnosis of AD, since it is
crucial to take different medical treatments for AD and Non patients.

6 Conclusions

To alleviate the block-wise missing data problem in the diagnosis of Alzheimer’s
disease, we propose a novel multi-source matrix factorization method. To fur-
ther improve the performance, we adopt self-paced learning with soft weighting
strategy to the factorization model. The integrated model can not only effectively
utilize multiple sources of data, but also reduce the influence of noisy data. The
effectiveness of the proposed model is empirically verified on the ADNI data set.
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