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Abstract—Acoustic motion tracking has been viewed as a
promising user interaction technique in many scenarios such
as Virtual Reality (VR), Smart Appliance, video gaming, etc.
Existing acoustic motion tracking approaches, however, suffer
from long window of accumulated signal and time-consuming
signal processing. Consequently, they are inherently difficult
to achieve both high accuracy and low delay. We propose
Vernier, an efficient and accurate acoustic tracking method on
commodity mobile devices. In the heart of Vernier lies a novel
method to efficiently and accurately derive phase change and
thus moving distance. Vernier significantly reduces the tracking
delay/overhead by removing the complicated frequency analysis
and long window of signal accumulation, while keeping a high
tracking accuracy. We implement Vernier on Android, and
evaluate its performance on COTS mobile devices including
Samsung Galaxy S7 and Sony L50t. Evaluation results show that
Vernier outperforms previous approaches with a tracking error
less than 4 mm. The tracking speed achieves 3× improvement
to existing phase based approaches and 10× to Doppler Effect
based approaches. Vernier is also validated in applications like
controlling and drawing, and we believe it is generally applicable
in many real applications.

I. INTRODUCTION

The rapid development and prevalence of mobile devices

enable various ubiquitous mobile applications [21] [13] [25].

Acoustic motion tracking using mobile devices has been

shown as a promising user interaction technique in many

scenarios such as Smart Appliance (e.g., TV control), Virtual

Reality (VR), Augmented Reality (AR), video gaming, etc.,

attracting many attentions and efforts. In acoustic motion

tracking, a mobile phone tracks its position using received

acoustic signal. For example, with acoustic motion tracking

the gesture or posture of a user can be obtained, which can

facilitate various applications.

Typically, inertial sensors such as accelerometer, gyroscope

can be used for mobile motion tracking [24]. However,

the tracking error is high (up to 60 cm even in 6s [24])

and thus accurate tracking is difficult to achieve [13]. Vari-

ous approaches leverage RF signal for mobile device track-

ing [20] [16] [9] [23]. Those approaches usually require

special hardware support or incur a high computation over-

head [18] [4] [2] [1].

Recently, acoustic signal based motion tracking is proposed

as a promising technique [15] [19] [11] [3] [12] [10] [5]

[7]. Further, CAT [13] proposes a novel distributed Frequen-

cy Modulated Continuous Wave (FMCW) based method for

mobile motion tracking. Using FMCW, the calculation of

moving time is translated to calculation of frequency. CAT

improves the accuracy by combining inertial sensors. Recently,

LLAP [21] proposes a tracking method based on phase shift of

acoustic signal. In LLAP, a mobile phone transmits an acoustic

signal, which is reflected by a moving target and received by

the mobile phone again. By calculating the phase shift between

the original signal and the reflected signal, the signal travelling

time and thus moving distance of the target can be obtained.

Existing approaches, however, have some limitations in

terms tracking accuracy, overhead and delay. Most approaches

require frequency analysis (e.g., FFT) to derive the frequency

shift, phase, etc., which inevitably introduces a high com-

putation overhead and delay. Moreover, tracking accuracy

is also limited by window length. Achieving high accuracy

requires accumulating and processing a sufficient window

of signal. Thus it is difficult to achieve both low latency

and high accuracy simultaneously. Those limitations hinder

performance improvement for acoustic motion tracking and

limit their practical application.

A. Our Approach

To address those limitations, we propose Vernier, an accu-

rate and fast acoustic motion tracking approach using mobile

devices. As in [24] and [13], a mobile device running Vernier

receives inaudible acoustic signals, each at a certain frequency,

from different signal sources (e.g., speakers on TVs). Instead

of calculating the frequency shift directly (e.g., using FFT),

Vernier designs a novel method to calculate the phase change

due to frequency shift with a small window of signal. Then

Vernier calculates the distance change to each source and

derives the real-time position of the mobile device.

In the heart of Vernier, we design a novel method to

efficiently calculate the phase change based on a very small

window of samples (e.g., 100 samples). Our method is inspired

by vernier caliper. Signal samples in our method act as the

vernier while the local maximums of original signal act as

the ruler. For different phase changes (length), the samples on

the vernier has different matching positions (local maximum)

on the ruler, which can be leveraged to further derive phase

change. To further improve the efficiency, we propose a

Differentiated window based phase change calculation (DW-

PC) in which we calculate the phase change based on local

maximum change between two windows. Further, we show
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Fig. 1: Principle of our approach.

that our method can achieve a higher accuracy than existing

approaches while has a much smaller delay and overhead.

Overall, Vernier aims to achieve the following goals: (1)

accurate tracking with mm-level error, (2) a low delay in order

to enable real-time applications such as mobile gaming and

(3) a low computation overhead efficiently run on commodity

mobile devices.

B. Summary of Main Results

We implement Vernier on Android and evaluate it on diff-

erent mobile devices including SAMSUNG Galaxy S7/Sony

L50t. Vernier has no special hardware requirements and can

run on most commodity mobile phones. The evaluation results

show that Vernier can achieve efficient tracking with a median

error less than 4 mm in various scenarios at a distance of

7 m. We believe Vernier is general and can facilitate nowadays

user interaction like Video Games, VR, AR, smart home

applications, etc.

Our major contributions include:

• We propose the design of Vernier, an accurate and fast

motion tracking approach on mobile devices, which lever-

ages a novel method to efficiently and accurately derive

phase change and thus moving distance.

• We analyze the performance of Vernier and compared it

with existing approaches. The analysis result shows the

performance improvement of Vernier.

• We implement Vernier on Android and evaluate it on

different mobile devices including SAMSUNG Galaxy

S7/Sony L50t. The evaluate results show that Vernier can

achieve efficient tracking with a median error less than

4 mm in various scenarios at a distance of 7 m.

The remainder of this paper is organized as follows. Sec-

tion II analyzes the limitations of existing approaches. Sec-

tion III presents the main design of our approach. Section IV

shows implementation parameters in real applications. Sec-

tion V shows the evaluation results. Section VI concludes this

work.

II. PRIOR ARTS

We briefly introduce the basic mechanisms of existing

acoustic motion tracking approaches and their practical limi-

tations.

f

t

f

T
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Fig. 2: Calculate the time t based on FMCW.

A. Tracking based on Doppler Effect

Many approaches track mobile device based on Doppler

Effect [24] [14] [8] [17] [6]. Suppose a sound source is

emitting a signal and a moving receiver receives the signal.

Due to Doppler Effect, the receiver’s relative speed v to the

sound source can be calculated as:

v =
FΔ

F0
c (1)

where F0 is the original frequency of the signal, FΔ is the

frequency shift due to Doppler Effect, and c is the speed

of sound. Therefore, the moving distance for time T can be

calculated as d =
∫ T

0
vdt. As a result, given the initial position,

the target can then be tracked.

The key step in Doppler Effect based tracking is to calculate

the frequency shift (Fc). By applying frequency analysis

(e.g., STFT) to the received acoustic signal, the spectrum

distribution of the received signal can be obtained. Given

the frequency of original signal (e.g., sine wave) [24], the

frequency shift Fc is calculated. In practice, the frequency

analysis (e.g., STFT) is applied to a moving window. Thus

the accuracy of frequency DF can be calculated as:

F̂ =
Fs

Lw
(2)

where Lw is the window length and Fs is the sampling rate.

Note that padding the signal with zeros cannot improve the

frequency resolution [21]. Combing Eq. (1) and (2), we can

derive the resolution of moving speed as:

v̂ =
F̂

F0
c =

Fs

LwF0
c. (3)

We can see that the accuracy of moving speed (and thus

distance) is related to the window size Lw. A larger window

can provide better frequency domain resolution and higher

moving speed accuracy. On the other hand, a larger window

contains more samples and causes a larger delay. For a

typical window Lw = 1764 samples and a sampling rate

Fs = 44100 Hz [24] [21], the accuracy of spectrum DF is
Fs

Lw
= 44100

1764 = 25 Hz. Suppose the frequency F0 = 20000
Hz and the speed of sound wave c = 340 m/s, the moving

speed resolution is v̂ = 25×340
20000 = 0.425 m/s. This indicates

that the accumulated distance error in 1 second can be up to

0.425 m. The corresponding delay using such a window is

1764/44100 = 40 ms.
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Moreover, Doppler shift is subject to high noise. Detecting

Doppler shift needs to detect the frequency with the highest

energy. However, the frequency with highest energy may be

difficult to determine due to noise as shown in [21] .

We can see that approaches using Doppler Effect, which

require window-based frequency analysis, introduce inevitable

computation overhead. High accuracy and small delay is dif-

ficult to achieve simultaneously in practice due to the relation

between window size and accuracy.

B. Tracking based on FMCW

A Frequency Modulated Continuous Wave (FMCW) or

chirp is a signal with linearly increasing Frequency. An

FMCW of length T with frequency ranging from fmin to fmax

can be denoted as

R(t) = cos(2π(fmin +
B

2T
t)t). (4)

where B = fmax − fmin is the bandwidth.

Assume a mobile phone needs to measure the length of path

an FMCW travels, e.g., the round-trip distance to a reflected

object. By using FMCW, the travelling time calculation can

be translated to frequency calculation. The mobile phone first

transmits an FMCW signal, which is directly received by the

mobile phone itself. Meanwhile, the signal travels along the

reflected path and is received by the mobile phone again.

The received signal can be denoted as R′(t) = αR(t − td),
where td is the time delay for travelling along the path and α
is the attenuation. Note CAT [13] removes the requirement

of receiving reflected signal and synchronization between

receiver and signal source by a distributed FMCW. But the

basic idea of distance calculation is similar. As shown in

Figure 2, the distance d can be calculated as

d =
c · td
2

. (5)

The time td can be calculated by the frequency difference

Δf between two FMCW signals. In practice, we multiply the

two signal signals R(t) and R′(t) according to cosA cosB =
1
2 (cos(A+B)+ cos(A−B)). By filtering the high frequency

component cos(A+B), we have:

V (t) = α cos(2π(fmintd +B
(2ttd − t2d)

2T
)). (6)

From Eq. (6), we have Δf = Btd
T where Δf is the frequency

of V (t). Thus we have

td =
Δf · T

B
. (7)

According to Eq. (7) and (5), the travelling distance can

therefore be calculated as

d =
Δf · c · T

B
. (8)

It is also required to derive the frequency of signal V (t)
(e.g., using FFT). According to Eq. (2), the resolution of

LLAP FMCW Doppler Our Approach

Removing Noise

Mix with Original Signal

FFT

Low Pass Filter

Low Consumption Signal Processing

Fig. 3: Working flows of different approaches.

frequency is F̂ = Fs/Lw. Thus, the accuracy of distance can

be calculated as

d̂ =
Fs · c · T
Lw ·B . (9)

Since Lw = Fs · T , we have

d̂ =
c

B
. (10)

Eq. (10) shows that the accuracy is only related to B. For

B = 10 kHz [13], which is very large for acoustic signal on

mobile, the accuracy is d̂ = 340/10000 = 0.034 m.

FMCW based approaches require multiplying two signals

(to derive Δf ), frequency analysis (e.g., FFT) and low pass

filtering (to remove the high frequency component).

C. Tracking based on Phase

Recently, LLAP [21] proposes a method for mobile tracking

based on low latency acoustic phase [22]. Suppose a sound

signal R(t) = cos 2πft travels through a path p with time-

varying path length of dp(t). According to [21], the received

sound signal from path p can therefore be represented as

Rp(t) = 2A′
p cos(2πft− 2πfdp(t)/c) (11)

where 2A′
p is the amplitude of the received signal, the term

2πfdp(t)/c comes from the phase lag caused by the propa-

gation delay of dp(t)/c and c is the speed of sound. The key

idea is to obtain the phase from the received signal Rp(t).
Based on the phase, the change of path length dp(t) can be

obtained. By multiplying the received signal with the signal

source cos 2πft, we have

R(t)Rp(t) = A′
p(cos(−2πf

dp(t)

c
) + cos(4πft− 2πf

dp(t)

c
)). (12)

The high frequency component cos(4πft − 2πfdp(t)/c) can

be removed by a low pass filter. Therefore, we can obtain

Ip(t) = A′
p(cos(−2πfdp(t)/c). Similarly, multiplying the

received signal Rp(t) with sin(2πft), we obtain Qp(t) =
A′

p sin(−2πfdp(t)/c). Then based on Ip(t) and Qp(t), we

can calculate the phase −2πfdp(t)/c = arctg(Qp(t)/Ip(t)).
Therefore, the path length change in a short time period can

be calculated by the phase change.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1711
Authorized licensed use limited to: Michigan State University. Downloaded on July 13,2021 at 14:43:39 UTC from IEEE Xplore.  Restrictions apply. 



N =  N1
N =  N1 + 1
N  =  N1

Local maximum

-
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D. Summary

We summarize the main working flow of different ap-

proaches in Figure 3. Both Doppler based approach and FM-

CW based approach require frequency analysis and filtering,

which incur extra overhead on mobile devices. Moreover,

the frequency analysis and filtering introduce an inevitable

delay, e.g., accumulating a window of samples for processing.

They also inherently have a limited resolution in distance

measurement. Phase based approach significantly improve the

accuracy. It still requires multiplying the received signal with

a given signal. It also requires different filters for signal

processing, which incurs a relative high computation overhead

and a non-negligible delay.

The analysis coincides with the experimental results in

those approaches: (1) For Doppler Effect based approach [24],

the median error for tracking is around 1.4 cm and quickly

increases over time due to error accumulation. The tracking

delay is 40 ms. (2) For FMCW based approach [13], the

median tracking error is 6 mm by combining inertial sensors.

The tracking delay is at least 40 ms due to the length of

STFT window. (3) For phase based tracking [21], the 1D

tracking accuracy is 3.5 mm the tracking latency is 15 ms.

The effective range for tracking is within 40 cm according to

their experiments.

III. VERNIER DESIGN

The design Vernier has the following goals:

• Accurate. The approach should be accurate with error in

mm-level.

• Efficient. It should be efficient and incurs a low overhead.

It should be able to run on commodity mobile phones

without specific hardware support.

• Low latency. It should be able to calculate the position

with a very small delay to satisfy real-time applications

such as mobile gaming, VR, etc.

A. 1D Tracking

We first introduce our approach for 1D case. Then we show

how to extend it 2D and 3D cases. Considering a static sound

source transmits an acoustic signal of frequency F0 and a

moving receiver (e.g., mobile phone) receives the sound signal.

For example, the signal source is the TV speaker and the

mobile phone is held by a user. The goal for 1D tracking

is to derive the mobile phone’s moving distance d to the

sound source. The distance can be calculated as d =
∫
t
v(t)dt.

Denote the sampling rate as Fs and the frequency for the

received signal as Fc = FΔ + F0. Due to Doppler Effect, for

a time period of length T , we have

d =
c

F0

∫
t

FΔdt =
c

F0

∫
t

(Fc − F0)dt =
cφ̃

2πF0
− cT (13)

where φ̃ is the phase change for the received signal in a time

period of length T and λ is the wavelength of acoustic signal at

frequency F0. From Eq. (13), we translate distance calculation

during a time period [0, T ] to calculation of the phase change

φ̃. The phase change can be calculated by the start phase and

end phase during the time period. Denote φ0 as the phase at

time 0 and φT the phase at time T , we have φ̃ = φ0 − φT .

1) Sampling based phase calculation: We show how to use

the samples to derive the phase change φ̃ in a time window

[0, T ] containing n samples. Intuitively, the samples contain

the information of phase change. For example, the number of

local maximum (or minimum) Nmax should correspond to the

maximum number of cycles contained in the signal, as long as

the sampling frequency Fs is larger than the Nyquist sampling

rate. Therefore, the phase change φ̃ can be approximated as

φ̃ = Nmax ·2π. Combined with Eq. (13), we can approximate

the moving distance Nmaxλ − cT . It can be seen that the

approximation error is less than a wavelength, i.e. λ = c/F =
1.7 cm when F0 = 20000 Hz.

We further show how to improve the accuracy in practice.

First, we have the following lemma.

Lemma 1: The expected number of local maximums for a

signal of phase change 2πN+φ0 (0 ≤ φ0 < 2π) is N+φ0/2π.

Proof 1: Without loss of generality, we assume 0 ≤ φ0 ≤
π/2. To calculate the expected number of local maximum.

We set N1 as the number of local maximum when φ0 = 0.

We assume the start of the signal is uniformly distributed in a

cycle, i.e., [0, 2π]. As shown in Figure 4, the expected number

of local maximum is calculated by

N̄ =

∫ π
2
−φ0

0

N1 +

∫ π
2

π
2
−φ0

(N1 + 1) +

∫ 2π

π
2

N1 = N1 +
φ0

2π
. (14)

Similarly, we can extend the proof to the case of π/2 < φ0 <
2π.

Lemma 1 indicates that by calculating the expected number of

local maximum, we can derive the phase change of the signal.

Meanwhile, local maximum can be extended to any relatively

fixed points in each cycle, e.g., local minimum.

2) Moving window based phase change estimation: In

practice, a key challenge is how to obtain the expected number

of local maximum. According to Lemma 1, it requires uni-

formly distributed sampling windows. However, as long as the

first window is given, all following windows are determined

given the fixed sample frequency. An intuitive approach is to

randomly choose windows, which introduces a long delay to

process all windows. We show how to derive the phase change

based on the local maximum with discrete samples. Without

loss of generality, we consider a signal of p cycles containing

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1712
Authorized licensed use limited to: Michigan State University. Downloaded on July 13,2021 at 14:43:39 UTC from IEEE Xplore.  Restrictions apply. 



q samples 

folding samples 

w1

w2

Fig. 5: Phase change calaulation (q = 13 and p = 3).

q samples as shown in Figure 5. Note p and q can be simply

calculated by the smallest integer satisfying p/q = Fc/Fs.

For example, if Fs = 44100 Hz and Fc = 20000 Hz, we have

p = 200 and q = 441. For the ith sample of phase φ[i], denote

its relative phase as φ[i] mod 2π.

Lemma 2: The relative phases of q samples are uniformly

distributed in [0, 2π].
Proof 2: Without loss of generality, assume the signal has

an initial phase 0. The relative phase of the ith sample can be

calculated as ip2π/q mod 2π = (ip mod q)2π/q. The result

of ip mod q are pairwise distinct for 0 ≤ i < q. Therefore, the

relative phases of q samples are evenly distributed in [0, 2π].
For example, as shown in Figure 5, there are 13 samples

covering 3 cycles, i.e., q = 13 and p = 3. Folding those

13 samples into a single cycle results in uniformly distributed

samples in the cycle.

3) Differentiated window based phase change estimation:
CW-PE still incurs a high overhead as the window needs to

be moved q times. We further propose an efficient method to

improve the efficiency, namely Differentiated Window based

Sample Counting for Phase Change Calculation (DW-PC).

Assume there are two windows w1 and w2, each of which

contains q samples that cover p cycles of signal. Denote the q
samples in w1 and w2 by mi(1 ≤ i ≤ q) and m′

i(1 ≤ i ≤ q).
We show that the phase change between m1 and m′

1 can be

calculated based on samples in w1 and w2. For each sample

mi(0 < i ≤ q) in w1, define the Local Maximum Prefix

(LMP) li(0 < 0 ≤ q) as the number of local maximum from

the beginning of w1 to mi. Define the Local Maximum Prefix

Sum (LMPS) of w1 as L =
∑q

i=1 li. Similarly, the LMPS of

w2 is denoted as L′. We have the following lemma.

Lemma 3: Assume the LMPS of m1 and m′
1 are L and L′

respectively, the phase change between m1 and m′
1 is (L′ −

L) 2πpq .

Proof 3: Lemma 2 shows that the relative phase of q
samples are evenly distributed in [0, 2π] with inter-distance

2π/q. As shown in Figure 5, we can virtually fold all samples

into a cycle to obtain uniformly distributed samples in the

cycle. Moving the window by 2π/q causes the local maximum

prefix of exactly one sample increases (decreases) by 1. As a

result, the LMPS is increased by 1. Therefore, if the LMPS

is increased by n, i.e. L − L′ = n, the window is moved

by n2π/q. Thus the phase change between m1 and m′
1 is

(L′ − L)2π/q.

Algorithm 1 DW-PC(m, φ̃)

Input: m[i](i = 1, 2, . . .), the samples continuously feeded from the
sampling component.

Output: the phase change φ̃[i](i = 1, 2, . . . ).
1: φ̃[1] = 0
2: Nmax = LMPS(m[1],m[2], . . . ,m[q])
3: for i = 2; ;i++ do
4: N ′

max = LMPS(m[i],m[i+ 1], . . . ,m[i+ q − 1])
5: φ̃[i] = (N ′

max −Nmax) · 2π/q
6: end for

Lemma 3 shows the relationship between the LMPS differ-

ence and phase change. According to Lemma 3, we can use the

LMPS difference of two windows to estimate the phase change

between the start of two windows. If the LMPS difference of

two windows is n, the phase change φ̃ can be calculated as

n2π/q. It can also be seen that the error eφ is at most 2π/q.

Otherwise, the LMPS difference of those two windows should

not be n. Based on the phase change φ̃, according to Eq. (13),

we can calculate the moving distance by phase change.

According to Eq. (13), the moving distance error can be

calculated as
c·eφ
2πF0

. For F0 = 20000 and q = 100, we can

see that the distance error by this method is only about 0.17

mm. Based on DW-PC, a mobile phone can continuously

measure the moving distance. It can be seen that DW-PC can

even update the moving distance for each sample, support-

ing efficient and accurate position measurement and motion

tracking. For example, when q is set to 100, only 100 samples

are required for each window, i.e., DW-PC can calculate the

moving distance with a delay of 100/Fs = 2.3 ms.

Algorithm 1 shows the simplified major steps of DW-PC.

The array φ̃[·] is used to store the phase change. Line 1-

2 initialize the parameters. Line 4 calculates the N ′
max for

window w2. Line 5 calculates the phase change based on Lem-

ma 3. It can be seen that DW-PC measures the phase change

with at most a linear computation overhead to the window

length (calculate the local maximum and LMCPS). Usually,

the window length is very small (e.g., 100), leading to a very

small computation overhead. Therefore, DW-PC can support

accurate and efficient distance movement measurement. The

performance of DW-PC is also validated in Section V.

B. 2D/3D Tracking

2D and 3D tracking can be achieved based on 1D tracking.

Assume the distance between two speakers A and B is d0 in

2D tracking. As shown in Figure 6, we build the axis with A as

the origin and x-axis along the direction from A to B. Assume

the mobile phone moves from X0 to X1 and the position of

X0 is known.

We show how to calculate the new position X1 by DW-

PC. First, we can calculate the distance a1 and a2 towards

signal source A and B by DW-PC. Therefore, we can calculate

the length X1A = X0A − a1 and X1B = X0B − a2.

Accordingly, we can calculate cosα =
d2
0+X1A

2−X1B

2d0X1A
. The

position (x1, y1) of X1 can be calculated as x1 = X1A ·cosα
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Fig. 6: 2D tracking based on DW-PC.

and y1 = X1A · sinα. Similarly, 3D tracking can be achieved

by 3 signal sources. Here we omit the details.

C. Initial Position of Signal Source

There are two types of information that should be

determined for most acoustic motion tracking approach-

es [24] [13] [21], i.e., the initial position of mobile phone

and the initial position of signal source. The first requirement

is to calculate the initial position of the signal source. Assume

there are two signal sources A and B, as shown in Figure 7,

calculating the initial position is equal to calculate the distance

between two signal sources. As DW-PC can directly measure

the distance a mobile phone has moved, we move the mobile

phone from signal source A to source B. The distance between

two signal sources A and B can then be calculated by DW-PC.

D. Initial Position of Mobile Phone

Another important step is to measure the initial position

of mobile phone. In [24] [13], particular filtering method is

used to derive the initial position. Intuitively, a large collection

of possible initial positions are generated, each of which is

tested according to the movement information. Finally, the

centroid of the remaining particulars is calculated as the initial

position. This introduces a high overhead and a relatively high

measurement error [24].

In our approach, we show how to derive the initial position

using DW-PC. We propose a method in which a user only

needs to move the mobile phone for a certain distance towards

a signal source or move the mobile phone from a signal source

to any position to calculate the initial position. We call this

method moving while initialization (MOWI).

As shown in Figure 7, assume the distance between A and B
is d0. Here we mainly show how to measure the initial position

by moving the mobile phone towards the signal source. The

method by moving the mobile phone from the signal source

to any initial position is similar. Suppose the initial position

of mobile phone is point X . A user moves the mobile phone

from X to Z, passing a point Y . During the moving process,

we can calculate the distance from X to Y and Y to Z using

DW-PC. Thus we can calculate the distance for a1, a2 for the

movement from X to Y , and b1 and b2 for the movement

A B x

y (x0,y0)

d0

a1

d2
b1

a2

b2

d1
d2

Fig. 7: Initial position of the mobile phone.

from Y to Z respectively. Denote the angle � XBA as α, the

distance ZB as d1 and the distance ZA as d2, we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cosα =
d2
1+d2

0−d2
2

2d0d1

cosα =
(d1+b1)

2+d2
0−(d2+b2)

2

2d0(d1+b1)

cosα =
(d1+b1+a1)

2+d2
0−(d2+b2+a2)

2

2d0(d1+b1+a1)

(15)

Solving this equation, we obtain

d2 =
a2
1b1 − a2

2b1 + a1b
2
1 − 2a2b1b2 + a1b

2
2

2(a2b1 − a1b2)
. (16)

Plugging d2 to the equation array, we can obtain the value of

d1. We omit the details for the lengthy formula of d1. Based

on d1 and d2, we can obtain the coordination (x, y) of X .

IV. IMPLEMENTATION

We implement Vernier on Android 6.0.1 as an App. The

signal sources of Vernier Tracker can be most COTS speakers

like the speakers on TV. In our implementation, we use the

speaker (SV S840B) as shown in Figure 8 (a). The speakers is

connected to a mobile phone which can play audio files con-

taining waves of different frequency. Instead of using a group

of sine and chirp signals on different frequency bands [13], our

approach uses sine waves (e.g., 20000 Hz and 17500 Hz for

2D tracking in our implementation). The sine wave files are

generated on a desktop computer. Vernier on Android receives

and analyzes the received signal, and displays the real-time

location on the screen. Meanwhile, Vernier Tracker can also

record all signal data for further analysis and comparison in

evaluation.

A. Moving Distance Measurement

We use the equipment in Figure 9 (a) to measure distance

accurately. The mobile phone is fixed on the platform of the

equipment. We can move the platform horizontally and verti-

cally by rolling the rocker. Figure 9 (b) shows the measured

distance on the mobile app. In the app, we draw a virtual rule

for 10 mm.

There are 25 scales on the rocker and the platform moves

1.25 mm when the rocker rolling one circle (0.05 mm for each

scale). We can move the platform horizontally and vertically so

we can obtain the ground truth for the mobile phone position.
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Fig. 8: Experiment scenario.

B. Clock Inconsistency

In practice implementation, we find that there exists a clock

inconsistency for the generated signal and received signal,

which further leads to a distance measurement error. We

conduct an experiment to validate the impact of clock incon-

sistency. We noticed the received signal frequency, even when

the mobile phone is static, is different from the signal source.

This leads to a non-zero moving speed and a continuously

increasing distance. To address the frequency inconsistency,

we propose a linear frequency compensate (FC) to calibrate

the frequency for the signal source and mobile phone.

Assume the frequency shift between the mobile phone and

the signal source is α. A signal at frequency F0 is received

at frequency (1 + α)F0. By keeping the mobile phone static,

we calibrate the frequency as follows. If there is no frequency

drift, the calculated phase change by DW-PC for a time period

T should be TF02π. Assume the calculated the phase change

by DW-PC for a time period T is φ, we can calculate the

frequency drift α = φ
2πT . We use α to compensate the

frequency shift between the signal source and mobile phone.

V. EVALUATION

A. Evaluation Methodology

We mainly evaluate the performance of Vernier from the

following aspects.

• Tracking accuracy: we show the accuracy of Vernier in

motion tracking compared with other approaches.

• Delay: the time consumption of Vernier and other ap-

proaches.

• Robustness: performance in different application environ-

ments.

• Overall performance: we also evaluate the overall perfor-

mance for different tracking paths.

B. Tracking Accuracy

We first measure the 1D distance tracking error. In this

experiment, we vary the initial distance from the mobile

phone to the speaker and calculate the corresponding distance

measurement error. The results show that the error is under

2 mm even when the distance between the mobile phone

and speaker is 7 m. The result is shown in Figure 10 (a).

Figure 10 (b) shows the detailed measurement error of diff-

erent moving distance for our approach. We move the mobile

phone for different distance from 1 cm to 10 cm ( larger-scale

Mobile Phone

(a) (b)

Fig. 9: (a) Moving distance measurement; (b) mobile app.

measurement is hard to achieve because of the limitation of

our equipment as shown in Figure 9 (a)). For each distance, we

measure the moving distance for 30 times. The accumulated

error is small for different moving distance. This enables our

approach for many applications, such as video gaming, VR,

smart appliances control, etc.

We further measure the tracking accuracy in 2D case. In

this experiment, we move the mobile phone following the a

path of ”L” whose size is about 2 cm × 2 cm. Figure 11

(a) shows the tracking error of different distance from the

mobile phone to the speakers. Figure 11 (b) shows how the

tracking error influenced by the speakers separation when the

mobile phone is 3 m away from the speaker. We can see the

error for different distance is slightly larger than that in 1D.

Nevertheless, the error is still under 4 mm.

C. Delay Performance

In our evaluation, we implement most recent acoustic track-

ing approaches including Doppler Effect based approach [24]

(denoted by Doppler), phase based approach [21] (denoted by

LLAP) and FMCW based approach [13] (denoted by FMCW)

for comparison. For fair comparison, we use the same recorded

signal in performance comparison for different approaches.

The FMCW based approach [13] requires both sine wave and

chirp signal for tracking, so we generate chirp signals from

8500 Hz to 18500 Hz for this approach. The mobile phone

used in our evaluation is Samsung Galaxy S7 with Android

6.0.1.

We implement an active version of this approach by using

the phase calculation method proposed in [21]. We directly use

the received signal from the speaker instead of the reflected

signal. By using such a method, the tracking range becomes

much larger than before. We denote such a method Phase+.

Figure 12 (a) shows average time consumption for each sample

using different approaches on Android device.

D. Robustness

In this experiment, we mainly show how our approach can

work in different environments for practical scenarios. We

evaluate the performance from the following aspects:

• Different intensity of noise.

• Different devices.

• Different multipath scenarios.
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Fig. 10: 1-D accuracy: (a) Different initial distance; (b) Diff-

erent moving distance.
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Fig. 11: 2-D accuracy: (a) Different initial distance; (b) Diff-

erent speaker separation.

The impact of noise intensity. In this experiment, we vary

the noise volume to different levels, i.e., around 40 db (library

room), 50 db (air conditioner’s noise), 60 db (human talking)

and 70 db (noisy street). Then we evaluate the performance

of Vernier under different levels. The result is shown in

Figure 12 (b). We can see that the error increases as the noise

level increases. The overall error for all distances is still very

small.

The impact of device. We also tested other mobile phones

(e.g., Sony L50t) and other speakers and the results are similar.

Figure 13 (a) shows the results on different devices when the

mobile phone moves 1 cm.

The impact of multipath scenarios. Ultra-sound has a strong

directionality because of its short wavelength. As a result, the

influence of multipath effect in active tracking system is es-

pecially weak. Figure 13 (b) shows the distance measurement

error in scenario with/without the reflection path by the surface

of the desk when the mobile phone moves 1 cm at the distance

of 1 m. The result demonstrates that the influence of multipath

effect in our experiment is slight.

E. Overall Performance

We evaluate Vernier Tracker using the method as in [13]:

the similarity between the Vernier Tracker reported trace and

the standard drawing template. In this experiment, we examine

the performance of Vernier to draw different figures. we print

different templates (banana, snake, hat and rabbit) and move

the mobile phone following the curve of printed templates.

As shown in Figure 14, we plot the tracking results and

compare them with the original templates. As we can see,
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Fig. 12: (a) Time consumption of different approaches; (b)

Median error of different noise intensity.
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Fig. 13: (a) Median error on different devices; (b) Median

error in with/without reflection scenario.

Vernier can follow the curves. All the details in the original

templates can be plotted, indicating a high accuracy of our

approach. It should also be noted that somewhere in the

drawing may not be as smooth as the original template. We

check the data and found that this may due to unstable drawing

as it is very difficult to control the drawing exactly and

smoothly following the original curve. Nevertheless, the results

demonstrate that Vernier preserves the details of the original

templates and can be used in real applications.

VI. CONCLUSION

In this paper, we present Vernier, an efficient and accurate

acoustic motion tracking approach on commodity mobile

devices. We address the fundamental limitations of existing

approaches in terms tracking accuracy, overhead and delay.

In Vernier, we present a novel differentiated window based

sample counting for phase estimate and mobile motion track-

ing. We theoretically show that Vernier can achieve accurate

motion tracking with a window much smaller than existing

approaches while incurring a small computation overhead and

delay. We implement Vernier in Android and examine its

performance with Samsung Galaxy S7 and Sony L50t. We

conduct extensive experiments to evaluate the performance of

Vernier. The results show that Vernier can achieve accurate

motion tracking with error less than 4 mm in 7 m. We believe

the design of Vernier is general and can facilitate various

mobile applications such as video gaming, VR, AR, etc.
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Fig. 14: Using 2D tracking to draw different templates. (a) (c) (e) (g) are the original templates of banana, snake, hat and

rabbit. (b) (d) (e) (h) are drawing results.
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