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EXECUTIVE SUMMARY  
Traditionally, road agencies have utilized police-

reported crash data both for the prioritization of high-

risk locations, as well as in the development and 

implementation of safety projects to address 

prevailing crash trends. This approach is reactive in 

nature and can lead to suboptimal investment 

decisions due to limitations that are inherent in crash 

data analysis. The use of connected vehicle (CV) data 

provides a promising means for addressing these 

limitations as information about CV events can be 

obtained both at larger scale and in a timelier manner 

as compared to crash data. To this end, the frequency 

of engagement in moderate or harsh driving events 

(e.g., braking, acceleration, cornering) present a 

promising surrogate measure as a supplement to, or in 

lieu of, crash data. This white paper examines the 

viability of using aggregated and de-identified CV data 

from Ford as a leading indicator for crash trends. 

Comparisons are made between CV event and crash 

data to assess the correlation and utility of the event 

data for predictive and evaluative purposes. Results 

illustrate the relationships between events and crashes 

at varying levels of fidelity and suggest such data 

provide a promising resource for road agencies for the 

purposes of proactive safety management. 

BACKGROUND 
Each year, more than 35,000 fatalities occur as a result 

of motor vehicle crashes in the United States, in 

addition to more than 5 million injuries (1). For every 

crash-related fatality, eight people are hospitalized, 

and 100 are treated and released from hospitals (2). 

Crashes also incur economic and societal costs, which 

are equivalent to approximately 1.6% of the US gross 

domestic product (3). Significant reductions in 

crashes, injuries, and fatalities have been realized over 

time due to advances in vehicle safety features, 

improved roadway design, and the introduction of 

various policies and programs to address behavioral 

issues that adversely affect traffic safety. However, 

these metrics have generally plateaued in recent years, 

providing motivation for further efforts to address 

this public health and economic issue (4).  In 2020, 

despite a decrease in vehicle miles traveled due to the 

pandemic, vehicle-related deaths were up 8% in the 

U.S.  

In response to these broader issues, a diverse range of 

highway safety stakeholders have adopted the national 

strategy of ‘Towards Zero Deaths’, which was 

initiated by the Federal Highway Administration in 

2009. These same stakeholders have developed 

strategic highway safety plans that outline 

comprehensive frameworks to help reduce traffic 

crashes and fatalities on public roads. These plans 

provide guidance as to the identification of emphasis 

areas where crash risks are most pronounced, as well 

as specific strategies that present the greatest potential 

for near- and long-term improvements in traffic 

safety.  

Historically, the most critical element of these data 

systems are police-reported crash data. In 

consideration of resource constraints, it is imperative 

that agencies are able to proactively identify crash 

countermeasures and candidate locations that present 

the greatest opportunities for improvement. To this 

end, the Highway Safety Manual (5) outlines best 

practices for data-driven and proactive methods of 

safety management. These practices are based upon 

the availability of high-quality, properly maintained, 

and regularly updated police-reported crash data. 

These data records are compiled by law enforcement 

agencies and describe the location, circumstances, 

persons, and vehicles involved in the crashes. Despite 

their utility, the use of police-reported crash data for 

performance monitoring and predictive analytics 

presents some inherent challenges.  

First, crashes are inherently rare and random events. 

Consequently, there is considerable variability in the 

frequency of crashes at individual roadway locations 

(e.g., intersections, segments) on a year-to-year basis. 

A significant number of crashes go unreported, 

especially those which involve minimal or no injury (6, 

7). There are also differences in the minimum 

reporting requirements from state to state.  For 

example, all states require a crash to be reported if it 

resulted in injury or death. However, crashes that do 

not result in injury are generally reported if minimum 

levels of property damage occur, ranging from $500 

to $2000 on a state-by-state basis (8). 
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Furthermore, at low-volume and rural locations, 

numerous years of data are required in order to make 

meaningful inferences as to where crash risks are 

overrepresented as compared to locations with similar 

traffic volumes and geometric characteristics. Police-

reported crash data also tend to include relatively 

limited information as to additional factors that 

contributed to the crash having occurred. Collectively, 

these issues limit the ability of road agencies to 

proactively and quickly respond to emerging road 

safety issues (9). 

To this end, various surrogate measures of road safety 

have recently emerged as promising alternatives to 

police-reported crash data (10). These surrogate 

measures include traffic conflicts and various other 

types of near-crash events. The advantage of these 

metrics is that they tend to occur significantly more 

frequently than crashes, allowing for safety issues to 

be identified more quickly as compared to reliance on 

police-reported crash data. Much of the early work in 

this area focused on facility-level observations, such as 

monitoring individual road locations through field 

observation or the use of cameras. Alternately, the 

observation of traffic over time and space provides an 

alternative means of network-level analysis. Recent 

examples include the second Strategic Highway 

Research Program (SHRP 2) Naturalistic Driving 

Study (NDS), which included voluntary participation 

from 3400 drivers using a series of cameras and 

sensors installed on the vehicles of study participants 

(11). While more efficient, these methods also tend to 

be resource-intensive and are difficult to implement at 

scale. 

In contrast, the emergence of connected vehicle (CV) 

technologies presents opportunities to leverage data 

for surrogate safety measures using equipment already 

installed in vehicles on the road today. These CV data 

can provide information about vehicle location, 

engine status, speed, and the use of various vehicle 

systems (12). This data presents a more objective lens 

than relying on subjective assessment of a crash scene. 

Moreover, CV event data are more frequently 

updated, providing significant advantages as 

compared to police-reported crash data for analysis 

purposes. 

Ford Motor Company (Ford) collaborated with 

Michigan State University (MSU) in order to assess the 

potential usefulness of its existing CV data in traffic 

safety analysis. This paper presents an overview of a 

pilot project that is using aggregated and de-identified 

CV event data to demonstrate how these CV data can 

be used by transportation agencies in developing 

traffic safety solutions. 

FORD CONNECTED VEHICLE 

DATA  
The vehicle data provided by Ford for this analysis 

included temporal and spatial information about 

driving events, including the frequency of 

acceleration, braking, and cornering at various 

threshold levels. These data, provided in an aggregate 

and de-identified format, can provide extensive 

information regarding traffic patterns and road safety 

conditions. 

Harsh driving events are defined as sudden changes in 

velocity and/or direction of the vehicle which are 

usually identified by changes in g-force above 

“normal” thresholds using an accelerometer (13). 

These include events such as harsh acceleration, harsh 

braking, and harsh cornering. These events present a 

promising surrogate safety measure to supplement 

police-reported crash data.  

Ford has shared a subset of aggregated and de-

identified CV event data with MSU in order to assess 

the utility of leveraging these events in transportation 

agency roadway safety applications. The research team 

at MSU assisted with the data visualization and 

developing statistical models to identify relationships 

between CV events and crash risk. The idea is to 

demonstrate how the harsh CV events data can be 

utilized in lieu of, or in complement to, crash data 

when assessing crash risk, and also in the identification 

of high-risk locations. 

The primary focus of this research was to examine the 

relationship between harsh CV events data and crash 

occurrence. This analysis focused on data from the 

metro Detroit area, specifically the road network in 

the seven counties that comprise the Southeast 

Michigan Council of Governments (SEMCOG) 

metropolitan planning organization. Ford is 
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headquartered in Dearborn, Michigan and this region 

presents relatively high levels of Ford CV data 

coverage compared to others.  

To date, CV event data were provided for the six-

months period from January 2020 to June 2020. The 

preliminary analyses have focused primarily on three 

different event types, namely, harsh acceleration, 

harsh braking, and harsh cornering. In total, more 

than 1.9 million of these events were found to occur 

during this period as shown in Figure 1. Events were 

significantly less frequent in April and May due, in 

part, to travel restrictions that were introduced in 

response to COVID-19. The de-identified data were 

provided in aggregate three-hour time bins. An 

additional event-level dataset was provided that 

included aggregated temporal and spatial (geographic 

coordinates) information.  

 For comparison purposes, crash data were obtained 

from the SEMCOG open data portal for the five-year 

period from 2015 through 2019. Crash data were 

aggregated by type (e.g., rear-end, angle) to allow for 

assessments of the degree to which the CV data are 

correlated with, or predictive of, various types of 

crashes. In addition to the crash data, traffic and 

roadway information were also obtained from the 

SEMCOG open data portal. These data include 

information such as the annual average daily traffic 

(AADT), national functional classification (NFC) of 

the road, road surface condition, and posted speed 

limit. Additional roadway inventory data were 

obtained for the state trunkline system through the 

Michigan Department of Transportation (MDOT). 

These data include additional information detailing 

roadway geometric characteristics, such as the number 

of lanes by type, as well as the presence of features 

such as medians, traffic signals, and sidewalks, among 

others. The Ford CV event data were integrated with 

the crash and roadway data using geographic 

information to create a road segment-level database. 

FIGURE 1 DISTRIBUTION OF FORD CV DATA FROM JANUARY-JUNE 2020 
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METHODOLOGY  
Using these data, a series of investigations were 

conducted to assess the value of using CV event data 

as a supplement or alternative to police-reported crash 

data. This research involved the following activities: 

1. Data visualization – As an initial step, the general 

relationship between traffic crashes and CV events 

was examined graphically at various levels of detail. 

The correlation in crash and CV event data was 

compared across different geographic areas, roadway 

environments, and across different subsets of 

crashes/events. 

2. Regression analysis – Regression models were 

estimated to assess the degree to which CV events 

were predictive of traffic crashes. Negative binomial 

models are estimated to examine relationships 

between the numbers of crashes and CV events on 

individual road segments while controlling for the 

effects of other pertinent factors, such as traffic 

volumes and segment length. 

3. Network screening – Historically, transportation 

agencies have generally prioritized intersections and 

road segments for safety improvement projects on the 

basis of historical police-reported crash data. Sites 

with higher numbers of crashes and/or crash rates are 

generally viewed as better candidates for such 

projects. This task involved a comparison of the 

relative rankings of road segments based upon the 

frequency of crashes as compared to the frequency of 

CV events. 

4. US-23 Flex Route case study – In November 2017, 

MDOT opened a Flex Route along US-23 between M-

14 and M-36. This project involved widening of the 

median shoulder, which is used as an alternative travel 

lane during peak traffic periods or in response to 

congestion or incidents. The CV event data were 

integrated for comparative analysis with probe vehicle 

speed data from the Regional Integrated 

Transportation Information System (RITIS).  RITIS 

is a data archiving and analytics platform maintained 

by the University of Maryland, which integrates 

relevant data from multiple agencies, systems, and the 

private sector. These data are commercially available 

to transportation agencies (14) and allowed for an 

investigation of the relationship between general 

travel speeds and the frequency of CV events. 

RESULTS AND DISCUSSIONS 

DATA VISUALIZATION AND 

REGRESSION ANALYSIS 
Figure 2 provides plots of the annual average number 

of crashes (from 2015-2019) versus the number of CV 

events (January-June 2020) for segments in the 

SEMCOG road network. Separate plots are provided 

for all roads, other principal arterials, minor arterials, 

and collectors. Principal arterials (e.g., freeways, 

including the interstate system) were excluded from 

the analysis due to limited network coverage and 

sparser events given the relative infrequency of harsh 

events on such facilities. 

Collectively, these plots show strong correlation with 

R2 values of 0.50, 0.59, and 0.50 for all roads, other 

principal arterials, and minor arterials. The collector 

roads showed an increasing trend, but significantly 

more variability as evidenced by an R2 of only 0.23. 

This is likely a function of several factors, including 

smaller road segments, lower traffic volumes, and a 

lower penetration rate of CV data as compared to the 

higher-class facilities.  

To obtain further insights as to the nature of these 

relationships, a series of negative binomial regression 

models are estimated with the results shown in Table 

1. Separate models are estimated for total crashes 

within each of the three functional classes. Traffic 

volume and speed limit are included as predictor 

variables, along with the number of CV events that 

were experienced on these same segments. Both 

AADT and CV event counts were log-transformed to 

improve goodness of fit. In examining the model 

results, crashes were found to increase by 

approximately 0.2 percent for a 1-percent increase in 

harsh CV events on both other principal arterials and 

minor arterials. On the collector roads, this effect was 

also present but less pronounced (approximately 0.12 

percent increase in crashes for a 1-percent increase in 

harsh CV events). These increases are after controlling 

for the effects of AADT, speed limit, and segment 

length. 
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TABLE 1 PARAMETER ESTIMATES FOR NEGATIVE BINOMIAL MODEL BASED ON ROADWAY CLASS  

Response Variable = Total Crash Count (2015-2019) 

` 

Parameters 

Other Principal Arterial (n 

= 2,956) 

Minor Arterial  

(n = 3,438) 

Collectors 

(n = 3,485) 

Estimate  

(Std. Error) 

p-value Estimate  

(Std. Error) 

p-value Estimate  

(Std. Error) 

p-value 

Intercept -2.39 (0.26) <0.001 -2.26 (0.20) <0.001 -1.70 (0.16) <0.001 

Ln(AADT) 0.62 (0.03) <0.001 0.56 (0.02) <0.001 0.52 (0.02) <0.001 

Ln(Harsh CV events 

per mile) 

0.20 (0.01) <0.001 0.21 (0.01) <0.001 0.12 (0.01) <0.001 

Speed Limit (mph)     

55 mph or more Base Condition Base Condition Base Condition 

40 mph to 50 mph 0.16 (0.08) 0.042 0.21 (0.07) 0.002 0.36 (0.06) <0.001 

35 mph or less 0.35 (0.08) <0.001 0.44 (0.06) <0.001 0.43 (0.05) <0.001 

FIGURE 2  PLOT OF CRASHES VS. CV EVENTS IN SEMCOG REGION BY FUNCTIONAL CLASS 
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Similar analyses were conducted specifically for the 

MDOT trunkline network. These analyses leveraged 

road network inventory files maintained by MSU, 

which have several advantages as compared to the 

SEMCOG data, including longer segment lengths 

(limiting concerns associated with very short segments 

experienced in the SEMCOG roads file) and more 

detailed information about roadway geometric 

characteristics. Separate analyses were conducted for 

various subsets of the data and samples are illustrated 

here for multilane (non-freeway) roads. 

Figure 3 includes plots for annual average crashes 

(2015-2019) versus the total number of harsh events 

and each of the three event subsets (harsh 

acceleration, harsh braking, and harsh cornering) for 

multilane roads. Collectively, these plots show very 

strong linear relationships between crashes and the 

CV event data (as indicated by R2). This is true for all 

of the CV event types, though the goodness-of-fit was 

better for harsh acceleration and harsh braking events 

(R2 = 0.69 in both cases) as compared to harsh 

cornering (R2 = 0.53). Collectively, these results 

suggest significant potential for using the CV event 

data as a supplement or proxy for crash data. 

Table 2 provides results of negative binomial 

regression models for two-lane and multilane roads. 

Again, these data show consistent relationships 

between crashes and harsh CV events, which are 

statistically significant (p-value < 0.001). The 

relationship is particularly strong on multilane roads, 

which may again be attributable to higher traffic 

volumes and CV penetration rates as compared to the 

two-lane facilities. 

FIGURE 3  PLOTS OF TOTAL CRASHES VS. HARSH CV EVENTS BY TYPE ON MULTILANE STATE TRUNKLINES 

(NON-FREEWAYS) 
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TABLE 2  PARAMETER ESTIMATES FOR NEGATIVE BINOMIAL MODEL FOR TOTAL CRASH COUNT 

Response Variable = Total Crash Count (2015-2019) 

` 

Parameters 

Two-Lane Roads (n = 214) Multilane Roads (n = 619) 

Estimate  

(Std. Error) 

p-value Estimate  

(Std. Error) 

p-value 

Intercept -2.09 (0.73) <0.001 -2.87 (0.71) <0.001 

Ln(AADT) 0.53 (0.09) <0.001 0.52 (0.09) <0.001 

Ln(Harsh CV events per mile) 0.20 (0.05) <0.001 0.39 (0.05) <0.001 

Speed Limit (mph)   

55 mph or more Base Condition Base Condition 

40 mph to 50 mph 0.20 (0.17) 0.016 0.40 (0.13) 0.003 

35 mph or less 0.54 (0.23) 0.226 0.93 (0.14) <0.001 

Further investigations were conducted for various subsets of crashes/events of interest. For example, Figure 4 provides 

plots of rear-end crashes versus harsh braking events. These relationships were consistently strong across facility types 

and this figure shows separate plots for two-lane highways (R2 = 0.50) and multilane roads (R2 = 0.65), respectively. 

 

FIGURE 4  PLOTS OF REAR-END CRASHES VS. HARSH BRAKING EVENTS FOR STATE-MAINTAINED TWO-LANE 

ROADS (LEFT)  AND MULTILANE ROADS (RIGHT) 

The available data were also used to assess the separate relationship crashes and CV events have with traffic volumes 

and speed limits. These analyses provide a general sense of the degree to which CV events may serve as a proxy for 

crash data. For example, Table 3 presents a side-by-side comparison of regression models for crashes and harsh driving 

events, respectively. 
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TABLE 3  COMPARISON OF NEGATIVE BINOMIAL MODEL FOR MULTILANE ROADS  

Multilane Roads (n = 619) 

` 

Parameters 

Response Variable = Total Crash 

Count 

Response Variable = Total Harsh 

CV Events 

Estimate  

(Std. Error) 

p-value Estimate  

(Std. Error) 

p-value 

Intercept -4.10 (0.69) <0.001 -2.92 (0.76) <0.001 

Ln(AADT) 0.87 (0.07) <0.001 0.90 (0.08) <0.001 

Speed Limit (mph)   

55 mph or more Base Condition Base Condition 

40 mph to 50 mph 0.64 (0.13) <0.001 0.42 (0.13) <0.001 

35 mph or less 1.23 (0.13) <0.001 0.49 (0.13) 0.001 

 

These results show very similar relationships with 

respect to traffic volumes. A one-percent increase in 

AADT was associated with a 0.87% increase in 

crashes and a 0.90% increase in harsh driving events. 

Crashes and CV events were also shown to increase as 

the speed limit was decreased, which is generally 

reflective of the interrelationships between speed 

limits and other segment-specific factors such as 

access point density, the frequency of signalized and 

stop-controlled intersections, and the level of roadside 

development. 

In addition to the segment-level analyses presented 

above, a series of investigations were also conducted 

for intersections along the MDOT trunkline network. 

A geographic information system (GIS) shapefile 

containing locations and characteristics of 4,324 

intersections in the metro Detroit region was obtained 

from MDOT. The dataset included information about 

the major and minor road traffic volumes, number of 

legs, type of traffic control, and level of service of 

safety (LOSS) for each of the intersection. LOSS is a 

four-class stratification scheme that compares the 

number of crashes a location experiences to the 

expected value based on a crash prediction model. 

LOSS I includes sites experiencing significantly fewer 

crashes while LOSS IV includes sites experiencing 

significantly more crashes than expected. 

Figure 5 shows the relationship between annual 

average crashes and harsh CV events across the entire 

sample of intersections, stratified by LOSS. When 

segregated into different subsets based upon the type 

of traffic control and number of approach legs, similar 

trends emerge.  
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Table 4 presents a comparison of negative binomial 

model results for crash counts and harsh CV events at 

four-legged signalized intersections. As in the 

preceding analysis (Table 3), the same predictor 

variables are used in order to assess the degree to 

which CV events and crashes vary with respect to 

major and minor road traffic volumes, as well as the 

LOSS categories described previously.  

Similar trends are again observed between crashes and 

CV events. CV events and crashes are both found to 

increase with traffic volumes on the major and minor 

roads. In both cases, the results are more sensitive 

with respect to major road volumes as compared to 

minor road volumes. Interestingly, there is also a 

consistent relationship between the event data and 

LOSS. The relationship between LOSS and crash data 

is expected since these tiers are based upon historical 

crash data from MDOT. As the CV event data show 

similar trends (i.e., higher LOSS tiers experience 

higher number of events), this further reinforces the 

internal validity of using events as a leading indicator 

of crashes. 

 

  

FIGURE 5  RELATIONSHIP BETWEEN CRASHES AND HARSH CV EVENTS AT INTERSECTIONS 
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TABLE 4  NEGATIVE BINOMIAL MODELS FOR FOUR-LEGGED SIGNALIZED INTERSECTIONS 

` 

Parameters 

Response Variable = Total Crash 

Count 

Response Variable = Total Harsh 

CV Events 

Estimate  

(Std. Error) 

p-value Estimate  

(Std. Error) 

p-value 

Intercept -7.78 (0.36) <0.001 -3.10 (0.37) <0.001 

Ln(Major Road AADT) 0.80 (0.04) <0.001 0.51 (0.04) <0.001 

Ln(Minor Road AADT) 0.40 (0.03) <0.001 0.31 (0.03) <0.001 

LOSS   

I Base Condition Base Condition 

II 0.51 (0.06) <0.001 0.26 (0.06) <0.001 

III 0.97 (0.08) <0.001 0.48 (0.08) <0.001 

IV 1.50 (0.14) <0.001 0.78 (0.14) <0.001 

NETWORK SCREENING 
The network screening process generally relies heavily 

on crash data. At the simplest level, many agencies 

rank locations exclusively on the basis of the annual 

frequency or rate (per million vehicle-miles traveled or 

million entering vehicles). Given the nature of crashes, 

ranking by crash frequency tends to overemphasize 

high-volume locations (where crashes are most 

prevalent) while the converse is true when considering 

crash rates (i.e., low-volume sites tend to receive 

disproportionate weight). 

Given the significantly greater frequency with which 

CV events occur, such data provide an appealing 

alternative for ranking locations as to their relative 

crash risks. To this end, the CV event data was utilized 

to rank locations based on the number of harsh 

driving events that were experienced. These rankings 

were compared to those based on a ranking by annual 

crash frequency. MDOT-maintained roads in the 

SEMCOG region were selected for network 

screening. Segments were included if the AADT was 

at least 1,000 veh/day and the segment length was at 

least 0.1 miles.  

From this list, the top 50 roadway segments were 

identified based on both metrics (number of crashes 

and number of harsh CV events). Figure 11 shows 

these locations. The segments with the highest annual 

average crash frequency and highest CV event 

frequency are shown in red and blue, respectively. The 

segments that are common in both the lists are shown 

in green (overlapping segments). Figure 11 shows that 

the high-crash locations also tended to experience 

high numbers of CV events. Out of 50 total segments 

in each of the lists, 29 segments were common in both 

lists. The rankings were also compared after 

normalizing the data based on segment length and 

AADT. In these instances, the rankings began to 

diverge as 15 common segments were in the top 50 

when considering crashes/events per mile and 8 

segments were common in terms of crashes/events 

per million vehicle miles traveled (MVMT). In these 

instances, segments tended towards the top of the lists 

if they were either very short in length (i.e., near to 0.1-

mi) or very low in AADT (i.e., near 1000 veh/day). 

There are also likely to be differences in the 

penetration rate of vehicles generating this CV event 

data across the SEMCOG region. 
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FIGURE 6  NETWORK SCREENING USING AVERAGE CRASH FREQUENCY AND CV EVENT FREQUENCY 
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US-23  FLEX ROUTE 
The CV event data were also used to assess 

relationships with traffic operational data. The US-23 

Flex Route was examined as a case study. For 

visualization purposes, speed data were aggregated at 

hourly and daily intervals, along with the associated 

numbers of harsh CV events at these same intervals.  

Figure 7 shows a time series plot of average daily 

speeds on the Flex Route from January 2020 to June 

2020. These plots are shown by date (on the x-axis) 

and mile marker in both the southbound direction 

(indicated by red lines) and the northbound direction 

(indicated by blue lines). 

These data show correlation in terms of when the CV 

events occur and when speed drops occur due to 

traffic congestion and other incidents. CV events were 

observed on days with lower average speeds. Similar 

trends are observed when the data is aggregated at 

one-hour intervals. This suggests the CV event data 

provide meaningful insights as to traffic operational 

performance measures even at this relatively high level 

of aggregation.  

FIGURE 7  TIME SERIES PLOT OF TRAVEL SPEED ON FLEX ROUTE AT DAILY AGGREGATION 
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CONCLUSIONS 
The Ford CV event data has shown promising results 

in this initial evaluation of its potential use for safety 

planning applications. The frequency of harsh CV 

events (acceleration, braking, cornering) exhibited 

significant positive correlation with the frequency of 

crashes. This was true for both road segment and 

intersection locations, as well as across different site 

types and in consideration of different subsets of 

crashes and CV events. The CV event data were also 

found to exhibit similar relationships with respect to 

segment-specific traffic volumes, speed limits, and 

other geometric characteristics. Even when 

controlling for the effects of these predictors, the CV 

events show further improvements in goodness-of-fit 

and increase the reliability of these predictive 

equations. This performance is likely to improve 

further with the increased penetration of vehicles 

generating this data. 

With that being said, there are also a few limitations 

that should be acknowledged. First, the event data is 

only collected from Ford connected vehicles with 

certain selected in-vehicle settings, in combination 

with an enabled FordPass mobile app feature. 

Consequently, it is unclear how representative this 

sample of connected vehicles is compared to the 

general population of vehicles on the road. 

Continuing on this point, the penetration rate of Ford 

connected vehicles is not balanced across the 

SEMCOG region. However, it is unclear how this rate 

varies spatially, and ongoing work is aimed at further 

investigating this general issue. 

Beyond the potential that has been demonstrated for 

safety evaluation, the CV event data also were 

reflective of changes in other traffic conditions based 

upon average speed data from the US-23 Flex Route. 

Additional research is proposed to investigate the 

applicability of these data across similar contexts, such 

as work zones and in assessing progression through 

signalized intersections. 

Ultimately, this research suggests that CV event data 

provide a statistically significant surrogate safety 

measure as a complement to or in lieu of police-

reported crash data. Further research will compare 

these data over the same time periods. Given data 

availability, this preliminary analysis considered 

police-reported crash data from 2015 through 2019, 

and CV event data from January 2020 to June 2020. 

Consequently, there are significant differences in 

coverage by time-of-year. Further, much of these CV 

event data were collected during the COVID-19 

pandemic. Consequently, the number of CV events 

was comparatively low compared to the prior years’ 

crash data. Stronger relationships may be anticipated 

when aligning the reporting periods for the event and 

crash data. 
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