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Study of diffusion and conduction in lithium
garnet oxides LixLa3Zrx�5Ta7�xO12 by machine
learning interatomic potentials

Jin Dai,a Yue Jiangab and Wei Lai *a

Lithium garnet oxides are an attractive family of solid-state electrolytes due to their high Li-ion

conductivity and good chemical stability against Li metal. Experimental study of these materials is often

troubled by chemical contamination (e.g. Al) or lithium loss, while computational study, theoretically

with controlled composition, is often limited either by accuracy (e.g. conventional interatomic potential)

or efficiency (e.g. density-function theory or DFT). In this work, we report the study of diffusion and

conduction of lithium garnets by a machine learning interatomic potential (MLIP) that is approaching

DFT accuracy but orders of magnitude faster. We found that this MLIP is more accurate than other

commonly applied models to study lithium garnets and is able to predict diffusion and conduction

properties that are consistent with experiments. Computational studies enabled by this MLIP, combined

with experimental data, suggest that ionic conduction is non-Arrhenius and maximum conductivity

occurs around x = 6.6 to 6.8 in LixLa3Zrx�5Ta7�xO12.

1. Introduction

Li-ion batteries are widely used in portable electronics and
electrical vehicles. Due to the flammability of organic liquid
electrolytes in the current Li-ion batteries, many materials have
been investigated as solid-state alternatives. Among them,
lithium garnet oxides have attracted much attention due to
their safety and stability.1 Since Thangadurai et al. first
reported Li ion conduction in Li5La3M2O12 (M = Nb, Ta) in
20032 and then high-conductivity cubic Li7La3Zr2O12 in 2007,3

many experimental and computational efforts have been
devoted to investigate the Li garnet series LixLa3Zrx�5Ta7�xO12

(x = 5–7).
As ionic conductivity is one of the most important material

properties for solid electrolytes, many experimental results
have been reported for various compositions of Lix-

La3Zrx�5Ta7�xO12 (x = 5–7), including both Al contaminated
(through alumina crucibles), Al doped, and nominally Al-free
phases. Fig. 1 summarizes some work of Al-free and Al-
contaminated experiments. For example, Wang et al.4 and Li
et al.5 used alumina crucibles and found that ionic conductivity
reaches a maximum at x = 6.7 (0.96 � 10�3 S cm�1) and x = 6.4
(1.0 � 10�3 S cm�1), respectively. The difference between these

two is that the former is for the bulk and the latter for the total.
On the other hand, Buschmann et al.,6 Inada et al.,7 Matsuda
et al.8 and Yi et al.9 synthesized Al-free compositions of
LixLa3Zrx�5Ta7�xO12 and found that ionic conductivity
reaches a maximum at x = 6 (2.6 � 10�4 S cm�1), x = 6.5
(6.1 � 10�4 S cm�1), x = 6.6 (4.7 � 10�4 S cm�1), and x = 6.7
(1.03� 10�3 S cm�1), respectively. Furthermore, Kataoka et al.10

synthesized single crystals and found that x = 6.6 has the
highest ionic conductivity of 1.1 � 10�3 S cm�1. Thus, it
appears that it is controversial as to what is the composition
for the maximum conductivity in LixLa3Zrx�5Ta7�xO12 even in
Al-free samples.

A lot of work has also been done in modelling. Computa-
tional studies have advantages over experiments as simulation
materials are literally Al free and without the complication of
grain boundaries, while normally experimental samples are
polycrystalline and are added with an arbitrary amount of extra
Li to compensate for the Li loss in the preparation process, i.e.
usually inaccurate Li composition. Both density-functional
theory (DFT)11,12 and interatomic potential (IP, also called force
field)13–17 based molecular dynamics (MD) simulations have
been performed to study lithium garnet series, not just limited
to LixLa3Zrx�5Ta7�xO12. DFT-MD simulations are generally lim-
ited to high temperatures and a relatively short trajectory (e.g.
tens of ps), while IP-MD simulations are limited by the IP
models that usually have low accuracy. In recent years, the
machine learning interatomic potentials (MLIP) based on the
artificial neural network (NN) model have received considerable
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attention as they show a combination of DFT accuracy and IP
efficiency.18–21 The present work, to be best of our knowledge,
will be the first to apply MLIP based MD simulations to
investigate lithium garnet series LixLa3Zrx�5Ta7�xO12 (x = 5, 6,
6.5, 6.75 and 7), named Li5, Li6, Li6.5, Li6.75, and Li7 afterwards.

Since experimental investigations, e.g. ionic conductivity
and diffusivity, of LixLa3Zrx�5Ta7�xO12 are often in the low-
temperature range (o500 K), while computational studies are
often in the high-temperature range (4700 K), another objec-
tive of the present work is to bridge this temperature gap by
performing ionic conductivity measurements of two Al-free
compositions, Li6 and Li6.5, in a temperature range of 295–
973 K. This is the first time that the ionic conductivities of these
two Al-free compositions have been reported in such a wide
temperature range. This wide-temperature measurement,
together with our MLIP-MD simulations, also allows us to
check if it is appropriate to apply the Arrhenius relation to
the temperature dependence of lithium garnet oxides, as com-
monly done in the literature.

The present work is organized as follows. First, we compare
the force/virial errors of MLIP, along with other commonly
applied methods such as Core,22,23 induced dipole (ID),24 the
self-consistent-charge density functional tight-binding (named

DFTB afterwards),25 and check how well they can reproduce
self-diffusivity and ionic conductivity of Li6. Second, we present
the MLIP error against DFT for all compositions of Li5, Li6, Li6.5,
Li6.75, and Li7 and show how this MLIP is approaching DFT
accuracy. Third, we examine the temperature dependence of
diffusion and conduction of various compositions including
the defect structure. Finally, we turn to composition depen-
dence and focus on the question of which composition gives
the highest ionic conductivity, by considering both experi-
mental literature and present computational results.

2. Methods
2.1 Potential parameters

Potential parameters of the Core model, where an atom is
treated as a fixed point charge, were taken from the work of
Chen et al.23 Potential parameters of ID and MLIP were
obtained from DFT-MD results. DFT calculations for all com-
positions were performed using the Vienna ab initio simulation
package (VASP)26 within the projector augmented-wave (PAW)27

approach using the PBEsol28 exchange–correlation functional.
The plane-wave energy cutoff was 500 eV and a single G point

Fig. 1 Summary of the composition dependence of ionic conductivity of LixLa3Zrx�5Ta7�xO12 from the literature.4–10 SC: single crystal.
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was sampled. First, we performed MD simulations, using an
NPT ensemble, at 1200 K for 3 ps with a 1 fs time step. We used
the average structure of the MD trajectory to obtain the atomic
charges in the DDEC6 scheme,29 which are listed in Table 1.

The MLIP model was trained with the SNU Interatomic
Machine-learning PotentiaL packagE-version Neural Network
(SIMPLE-NN) package,18 with atom-centered symmetry
functions20 as the descriptor and neural network (310-30-30-1)
as the regressor. DFT-MD trajectories of Li5, Li6, and Li7 were
used with energy, force, and cell-virial included in the training.
For each composition, configurations were sampled every 4 fs
after skipping the first 100 fs. 90% of this DFT dataset was used
for training and 10% was used for validation. The ID model
(80% of formal charge) of Li6 was trained with CP2K30,31 on the
DFT-MD trajectory including only forces but all configurations,
as we did previously for Li7.32 DFTB parameterization for the
Li–La–Zr–Ta–O chemical space was obtained with the Tight-
binding Approximation-enhanced Global Optimization
(TANGO) method33 with CP2K as the DFT package including
both energy and force. It is worth noting that MLIP does not
include atomic charge parameters. The numbers in Table 1
were only used for the calculation of conductivity. With DFTB,
the Mulliken charge was utilized.

2.2 Molecular dynamics simulations

As mentioned in the introduction, there was Li loss during the
high-temperature synthesis and an arbitrary amount of lithium
precursor was often added to compensate for this. It is thus
worthwhile comparing the normal (nominal composition) to defect
structures with Li loss. In this work, in addition to Li5, Li6, Li6.5,
Li6.75, and Li7, we also added the Li5.88La3Zr1.5Ta0.5O11.69 (10 mol%
Li2O off of Li6.5, named the Li6.5 defect afterwards).

MD simulations of the Core and MLIP models were per-
formed using Large Scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS)34 with 2 � 2 � 2 supercells. MD simula-
tions of the ID and DFTB models were performed using CP2K
with 2 � 2 � 2 and 1 � 1 � 1 supercells, respectively. Details of
MD simulations including the ensemble, thermostat, barostat,
etc. are listed in Table 2, along with approximate simulation
cost. DFT-MD simulation of 2 � 2 � 2 supercells is expected to
be 5 or 6 orders of magnitude slower than MLIP.

2.3 Methods to study self-diffusion and ionic conduction
from MD trajectories

Li diffusion was investigated by the incoherent density correla-
tion function, from which the residence time, jump length, and
self-diffusivity (DLi) could be extracted.14 Ionic conductivity was
calculated using the Einstein–Helfand equation35 by examining
the coherent conductivity

s ¼ 1

kBTV
lim
t!1

1

6t

XN
i¼1

zieri tð Þ �
XN
i¼1

zieri 0ð Þ
 !2* +

where kB is the Boltzmann constant, T is the temperature, V is
the volume of the simulation cell, N is the number of atoms, zi

and ri are the charge and coordinate of the ith atom, e is the
elementary electron charge and t is the time. This (coherent)
ionic conductivity is directly related to experimental measure-
ment. We can also calculate the Nernst–Einstein conductivity
from the self-diffusivity:

sNE ¼ zLieð Þ2 DLi

kBT
ðcLiÞ

Where cLi is the lithium concentration. The ratio of sNE to s is
known as the Haven ratio:

HR ¼
sNE

s

The Haven ratio is 1 for ideal solutions where the motion of
ions is independent and uncorrelated.

Table 1 DDEC6 charge of each composition

Li5 Li6 Li6.5 Li6.75 Li7

La 1.87 1.88 1.88 1.84 1.89
Ta 2.32 2.33 2.33 2.23 —
Zr — 2.23 2.23 2.18 2.25
O �1.20 �1.26 �1.29 �1.28 �1.32
Li 0.83 0.82 0.82 0.81 0.81

Table 2 MD simulation details. Approximate simulation time of four models for 1 ns of trajectory is shown (core, ID, and MLIP models were using 64
CPUs while the DFTB model was using 28 CPUs). It is worth noting that the DFTB model is using 1 � 1 � 1 while other models are using 2 � 2 � 2
supercells. DFT-MD is expected to be 5 or 6 orders of magnitude slower than MLIP

Ensemble Parameters Core ID DFTB MLIP

NPT Thermostat (ps) 0.05 0.1 0.1 0.1
Barostat (ps) 0.25 0.5 0.5 0.5
Timestep (fs) 1 1 1 1
Lattice parameter average range (ps) 30–50 30–50 30–75 30–50

NVT Thermostat (ps) — — 1 —
Timestep (fs) — — 1 —
Trajectory length (ns) — — 0.5–3 —

NVE equilibration Thermostat (ps) 0.1 0.1 — 0.1
Trajectory length (ps) 50 50 — 50

NVE Timestep (fs) 1 1 — 1
Trajectory length (ns) 0.5–300 0.5–8 — 0.5–40

NVT/NVE Approximate simulation time per ns trajectory (h) 0.3 40 170 20
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2.4 Experiments

Powders of Li6 and Li6.5 were prepared with a solid-state
reaction where stoichiometric quantities of LiOH�H2O (Alfa
Aesar, 98%), La2O3 (Alfa Aesar, 99.9%), ZrO2 (Alfa Aesar, 99.7%)
and Ta2O5 (Alfa Aesar, 99.85%) were used as raw materials. La2O3

powders were heated at 900 1C for 12 h in a MgO crucible (all
crucibles and lids used in this work were MgO to avoid Al
contamination). An extra 10 wt% LiOH�H2O was added to compen-
sate Li loss during calcination. The powders were wet-milled in a
roller mixer for 12 h in polyethylene jars filled with 2-propanol and
then the slurry was dried by infrared heating. The mixed powders
were calcined at 1000 1C for 12 h with a heating and cooling rate of
2 1C min�1 in MgO crucibles covered by MgO lids. Afterwards, extra
10 wt% or 5 wt% LiOH�H2O was added into the calcined powders of
Li6 and Li6.5, respectively, and ball-milled again, and finally pressed
into 13 mm diameter pellets and sintered at 1150 1C for 12 h. The
silver paste was applied to both sides of the pellets as blocking
electrodes and heated at 700 1C. Impedance tests at a temperature
range of 22–700 1C were performed using the same setup as in our
previous work36 with air flow. A sinusoidal voltage with an ampli-
tude of 10 mV was applied for the frequency range of 3 MHz to 1 Hz.

3. Results and discussion
3.1 Comparing different models for Li6

Before studying the whole series of Li5, Li6, Li6.5, Li6.75, Li7, and
Li6.5 defects, we want to compare the results of MLIP vs other
commonly utilized models, using a representative composition
of Li6. We will compare the model force/virial against DFT
values, and lattice parameters, self-diffusivity, and ionic con-
ductivity against experimental values.

3.1.1 Force and virial. Atomic force (3 for each atom) and
cell-virial (6 for each structure) values from the trained MLIP,
ID, and DFTB models against DFT values out of 145 structures
are shown in Fig. 2. Deviation from the DFT results is assessed
by the root mean squared error (RMSE). The RMSE of force and
virial for the MLIP model are 0.14 eV Å�1 and 0.20 GPa,
respectively, which are lower than that of the Core, DFTB,
and ID models.

3.1.2 Lattice parameters of Li6 using different models. We
first checked the temperature dependence of the lattice para-
meters, shown in Fig. 3 to see if these four models could
reasonably predict the thermal expansion of Li6. We include
diffraction results from various literatures6,8,15,37 in the figure
for comparison. Most experimental measurements of the lattice
parameters were performed at room temperature. At room
temperature, the lattice parameters of the MLIP, Core, and ID
models have an error between 0.1–0.3%, while the DFTB
model’s error is B0.6%. If we use the 10 K and 300 K measure-
ment results from Wang et al.15 as a reference, we see that all
four models predict a nearly constant thermal expansion and
similar expansion coefficients. Specifically, the thermal expan-
sion coefficients for the MLIP, Core, ID, and DFTB models are
1.74 � 10�5, 1.51 � 10�5, 1.57 � 10�5, and 1.91 � 10�5 K�1,
respectively.

3.1.3 Diffusion and conduction properties comparison
among different models. Self-diffusivity and ionic conductivity
from the four models are plotted in Fig. 4, along with the
experimental results from single crystal measurements. All four
models predict similar self-diffusivity and conductivity at high
temperatures. However, if we examine the whole temperature,
the MLIP model agrees with the experiments the best, while the
ID and Core models significantly over- and under-estimate,
respectively, the low-temperature diffusion and conduction.
While it is understandable that the Core model did not perform
well due to the very large force error (Fig. 2), it is surprising to
see the predication from the ID model, as its force error is
comparable to that of MLIP. We believe that this indicates that
the ID model lacks transferability. The DFTB model predicts
diffusion and conduction similar to those of MLIP, but its force
error is much higher. Thus it is possible some self-cancellation
leads to its reasonable performance. In addition, the DFTB
model is much more computationally expensive compared with
the other three models. As shown in Table 2, the simulation
time for the 1 ns trajectory is approximately 170 hours for a
1 � 1 � 1 supercell, while the other models take less than
40 hours for supercells that are 8 times bigger.

Self-diffusivity from MLIP is slightly higher than the experi-
mental values at low temperatures. It is worth noting that the
work of Stanje et al.37 only measured the relaxation time from

Fig. 2 A comparison of (a) atomic forces and (b) cell virials of Core, DFTB, ID, and MLIP (scatter points) against DFT (black lines) for Li6.
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nuclear magnetic resonance experiments and assumed a jump
length of 2 Å. As will be shown later in Fig. 6b, we found the
jump length is 2.3 Å at 400 K. If 2.3 instead of 2 Å was used, the
agreement of MLIP to the experiment will be even better.

3.2 Force/virial error and lattice parameter of Li5, Li6, Li6.5,
Li6.75, and Li7

Force and virial error against DFT (i.e. PBEsol) for the whole
series studied in the present work are shown in Table 3. To
understand the meaning of these numbers, we also compared
the error between two different exchange–correlation func-
tionals, i.e. PBE vs PBEsol, and found the force error was about
0.1 eV Å�1. In other words, we can argue the DFT error might be
around 0.1 eV Å�1 and our MLIP model is approaching DFT
accuracy but much faster (DFT will be 5 to 6 orders of
magnitude slower based on our estimate). Furthermore, it is
transferable as it shows similar errors for different composi-
tions, i.e. Li5 to Li7.

Before applying this MLIP model to study the diffusion and
conduction properties, we want to check if it can reproduce
the structure of different compositions in terms of lattice

parameters. The temperature dependence of lattice parameters
is shown in Fig. 5a. For cubic phases such as Li5, Li6, Li6.5, and
Li6.5 defects, lattice parameters increase linearly with increas-
ing temperatures with similar thermal expansion coefficients.
The lattice parameters of Li6.5 and Li6.5 defects are almost the
same. For Li7, the tetragonal to cubic phase transition takes
place within a temperature range between 1000 and 1100 K,
which is slightly higher than the experimental value of 913 K.38

For Li6.75, the tetragonal to the cubic phase transition is around
700–800 K.

Fig. 5b shows calculated lattice parameters at room tem-
perature as a function of x (Li content) in LixLa3Zrx�5Ta7�xO12.
The experimental data of single crystals from Kataoka et al.,10

Al-free powder samples from Buschmann et al.,39 Matsuda
et al.,6 Awaka et al.,8 and Thompson et al.40 are shown in the
plot for comparison. For cubic phases, the lattice parameter
increases linearly with increasing Li content. Our simulation
data agree very well with the experimental values reported in
the literatures. Both simulation and experimental results sug-
gest that the cubic to tetragonal transition takes place at
around x = 6.6 at room temperature, with the exception of
Kataoka et al.10 where it was cubic even at x = 6.8.

3.3 Temperature dependence of self-diffusion

Fig. 6a–c summarizes the residence time, jump length, and self-
diffusivity of Li5, Li6, Li6.5, Li6.75, and Li7 at the temperature
range of 400–1200 K. In terms of self-diffusivity (Fig. 6c),
temperature dependence is roughly Arrhenius with activation

Fig. 3 Lattice parameter as a function of temperature of Li6La3ZrTaO12

from different models. Literature values of Al-free samples at room
temperature6,8,15,37 are shown for comparison. XRD: X-ray diffraction;
ND: neutron diffraction. Solid lines are the linear fit.

Fig. 4 (a) Self-diffusivity and (b) ionic conductivity of Li6 as a function of inverse temperature from different models. Single crystal (SC) data from Stanje
et al.37 are shown for comparison.

Table 3 The root mean squared error (RMSE) values of atomic forces, and
cell virials between MLIP and DFT for all the compositions studied. RMSE
between PBE and PBEsol are shown for comparison

Force (eV Å�1) Virial (GPa)

Li5 PBE vs. Li5 PBEsol 0.10 2.57
MLIP vs. Li5 PBEsol 0.15 0.23
MLIP vs. Li6 PBEsol 0.14 0.20
MLIP vs. Li6.5 PBEsol 0.12 0.21
MLIP vs. Li6.75 PBEsol 0.12 0.22
MLIP vs. Li7 PBEsol 0.11 0.22
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energies (0.26–0.33 eV), except for Li7, where the cubic (0.27 eV)
and tetragonal (1.33 eV) phase have very different activation
energies. Li5 has the highest diffusivity at high temperatures
while Li6.5 has the highest diffusivity at low temperatures. Self-
diffusivity is related to residence time (t) and jump length (l) as
l2/(6t). Fig. 6b indicates that jump lengths have a narrow range
of 1–3.5 Å, with shorter jumps at higher temperatures. The
nearest neighbor tetrahedral and octahedral sites in lithium
garnets are 1.5–2.5 Å.14 The plot of residence time, the average
time a Li spends on a site before jumping to the next site,

largely follows Fig. 6c, as the jump length is relatively tempera-
ture insensitive.

To show a comparison of self-diffusivities between the results
calculated from our MD simulations and those from the experi-
ments, we plotted the results of Li5 and Li6.5 separately in Fig. 6(d
and e). A comparison for Li6 was shown previously in Fig. 4a.
Computed self-diffusivity values are slightly lower than those from
quasi-elastic neutron scattering (QENS) measurements14 for Li5,
while they are slightly higher than those from pulse-field NMR
measurements41–43 for single crystals of Li6.5. In Fig. 6e, we also

Fig. 5 (a) Lattice parameters as a function of temperature of Li5, Li6, Li6.5, Li6.75, Li7, and Li6.5 defects. The solid lines are a guide to the eye. (b) Lattice
parameters from MLIP-MD at room temperature versus x (Li content). Literature values of single crystals (SC)10 and Al-free powders6,8,39,40 are shown for
comparison.

Fig. 6 Inverse temperature dependence of (a) residence time, (b) jump length, and (c) self-diffusivity of Li of Li5, Li6, Li6.5, Li6.75, and Li7. The solid lines are
a guide to the eye and shades in (b) are the range of error. (d and e) Self-diffusivity as a function of inverse temperature for Li5 and Li6.5. Experimental data
from pulse-field gradient NMR measurements of single crystal (SC)41–43 and QENS measurement14 are shown for comparison.
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compared the normal and defect structure of Li6.5. Self-diffusivities
of these two structures are almost the same at high temperatures,
e.g. 900–1200 K, while the defect structure has noticeably lower
diffusivity at low temperatures.

3.4 Temperature dependence of ionic conductivity

Similar to the self-diffusivity plot, we present in Fig. 7a the ionic
conductivity of Li5, Li6, Li6.5, Li6.75, and Li7 and in Fig. 7d–f the
comparison to experiments. As discussed in the introduction,
MD simulations are usually performed at high temperatures
while the experiments are carried out at low temperatures. If we
only have ionic conductivity data of a limited temperature
range, we usually assume an Arrhenius relation. However,
examination of our wide-temperature experimental measure-
ment of ionic conductivities of Li6 and Li6.5 from the present
work, along with that from Stanje et al.37 and Jin et al.44 in
Fig. 7d and e, clearly suggests a non-Arrhenius behavior. Given
this, we chose a common non-Arrhenius model, Vogel–Tam-

mann–Fulcher (VTF) equation45–47 with s ¼ A � exp � B

T � T0

� �
,

where A is a pre-exponential factor, B the artificial activation
energy, and T0 the Vogel temperature below which ions are not
mobile. We applied the VTF fit to our MD data, except for Li7

where we applied the Arrhenius fit for the cubic (0.13 eV) and
tetragonal (1.15 eV) phases separately. The transition tempera-
ture T0 is plotted in Fig. 7b. Its values are below 200 K and

decrease with increasing Li content, which suggests that higher
Li content might lead to higher conductivity at low
temperatures.

If we extrapolate MD data through the VTF fit to lower tempera-
tures, we can see they agree well with the single crystal data from
experiments, except for Li6.75. In Fig. 7d, we also compared the
Nernst–Einstein conductivity from the self-diffusivity and (coherent)
ionic conductivity of Li6. Ionic conductivity is higher than the
Nernst–Einstein conductivity, which indicates the ionic motion is
positively cooperated, i.e. ions moving together are faster than
moving alone. This positive cooperation was called concerted in
the studies of Li7.11,48 Haven ratio, i.e., Nernst–Einstein over ionic
conductivity, is plotted in Fig. 7c for all compositions, with values
between 0.1 and 0.4. A Haven ratio of B0.3 was reported by He
et al.48 (900 K) and Mottet et al.49 The temperature dependence of
the Haven ratio indicates a higher value (less cooperation) at higher
temperatures. This is intuitive as it is expected that the thermal
agitation tends to break the atomic cooperation, which makes the
atomic motion more independent. In Fig. 7e, we compared the
ionic conductivity of Li6.5 and Li6.5 defects. Similar to the self-
diffusivity comparison in Fig. 6e, the ionic conductivity of the
normal structure is higher.

3.5 Composition dependence

To examine the composition dependence of diffusion, we
plotted in Fig. 8a the self-diffusivity at 1200 K and 400 K to

Fig. 7 (a) Ionic conductivity of Li5, Li6, Li6.5, Li6.75, and Li7 as a function of inverse temperature. Solid lines are fits to the VTF equation (except for Li7 where
two Arrhenius fits are applied to the high and low temperatures). Error bars of Li6.75 and Li7 represent the ionic conductivity in the ab and c directions.
(b) Vogel temperature (T0) of different Li content. (c) HR for the composition series. Solid lines are a guide to the eye. (d–f) Comparison of results from
(a) and experimental values for Li6, Li6.5/Li6.5 defect, and Li6.75. Experimental values include single crystal (SC),10,37,41,43 Al-free,9 and Al contaminated
powders (through alumina crucibles).44
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represent high and low temperature, respectively. At 1200 K, the
self-diffusivity decreases with increasing Li content, suggesting
a vacancy mechanism. At high temperatures, each Li ion has
enough thermal energy to move around. However, as Li ions
must move through a network of interconnected tetrahedral
and octahedral sites, they will be competing for the vacant sites.
At low temperatures, e.g. 400 K, Li ions do not have sufficient
thermal energy so only some of them are moving around.
Adding more Li will increase the overall Li–Li repulsion and
initiate more Li to move, leading to overall increasing diffusiv-
ity with increasing composition.

The composition dependence of ionic conductivity is shown
in Fig. 8b. It is worth noting that we could not detect Li
conduction at 400 K for Li7 so MD simulation suggests the
maximum conductivity at 400 K occurs at Li6.75. If we compare
Fig. 8b with Fig. 1 presented in the introduction for room
temperature experimental values from various literatures, we
can see the overall composition dependence looks similar. The
difference is the peak composition. For example, results from
Buschmann et al.6 indicate the peak composition is Li6. Yi
et al.9 showed Li6.7 has the highest ionic conductivity. Inada
et al.7 found Li6.75 to be cubic and its ionic conductivity is lower
than that of Li6.5. Matsuda et al.8 reported the peak at Li6.6 and
Li content 6.625 to 7 to be tetragonal. While these reports are all
on polycrystalline samples, Kataoka et al.10 synthesized single
crystals and found Li6.2 to Li6.8 to be cubic with a peak
conductivity at Li6.6. From the perspective of experiments,
single crystals are probably preferred over polycrystals as they
are less susceptible to the influence of density and grain
boundary segregation (e.g. space charge layer). However, an
arbitrary amount of Li excess had to be added to all these
samples, which makes the composition used for conductivity
measurement a little ambiguous after an arbitrary amount of Li
loss during the high temperature processing. Our MD results
suggest that Li loss, e.g. Li6.5 defect, will decrease the ionic
conductivity. Finally, experimental samples are also subjected
to H2O and CO2 contamination to form LiOH and Li2CO3 and it
is reasonable to expect such contamination will be more severe
when Li is more mobile, i.e. high Li content. Nonetheless, it is
probably reasonable to argue the maximum conductivity occurs

somewhere between 6.6 and 6.8 based on combined experi-
mental and computational results.

4. Conclusions

In this work, we studied the diffusion and conduction of
lithium garnet oxides LixLa3Zrx�5Ta7�xO12 (x = 5, 6, 6.5, 6.75,
and 7) with MD simulations based on a machine learning
interatomic potential (MLIP). We found that this MLIP is
approaching DFT accuracy in force error. It is more accurate
than other commonly applied models such as Core, induced
dipole (ID), and DFTB and predicts diffusion and conduction
properties that agree with single crystal experimental data
much better than the other three models, when using Li6La3Zr-
TaO12 as a model material. This MLIP also produces self-
diffusivity and ionic conductivity values agreeing with experi-
mental data across the x composition range. Examination of
computational and experimental ionic conductivities suggests
that the temperature dependence is non-Arrhenius which can
be fit to a Vogel–Tammann–Fulcher equation with a Vogel
temperature below room temperature. Examination of the
computational and experimental values together also suggests
that the maximum room-temperature conductivity occurs
between x = 6.6 to 6.8 with the precise composition depending
on Al/H2O/CO2 contamination, Li loss, grain boundary, density,
etc.
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